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Figure 1: Clustering techniques in an immersive sensemaking tool. (a)&(b): Before and after forming an explicit cluster in the
Proximity condition. Two or more documents in proximity to each other automatically create a new cluster; (c)&(d): Before and
after forming an explicit cluster in the Overlap condition. The user intersects two documents manually to form a new cluster; (e):
Informal cluster formed manually in the Freestyle condition; (f): Sample of a card in the Vehicle dataset;

ABSTRACT

Immersive spaces have great potential to support analysts in com-
plex sensemaking tasks, but the use of only manual interactions
for organizing data elements can become tedious. We analyzed
the user interactions to support cluster formation in an immersive
sensemaking system, and we designed a semi-automated cluster cre-
ation technique that determines the user’s intent to create a cluster
based on object proximity. We present the results of a user study
comparing this proximity-based technique with a manual cluster-
ing technique and a baseline immersive workspace with no explicit
clustering support. We found that semi-automated clustering was
faster and preferred, while manual clustering gave greater control to
users. These results provide support for the approach of adding intel-
ligent semantic interactions to aid the users of immersive analytics
systems.
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1 INTRODUCTION

Visual analytic tools have evolved over the years to support the
continuous increase of large multimedia datasets [1, 6, 14, 19, 33].
These systems often aim to combine the computational power of
the machines and the insightful perspective of human analysts. The
analytic process relies on the users interacting with dataset elements,
exploring plausible connections between them, organizing relevant
information, and eventually solving a problem or making a decision
which is often referred as Sensemaking [43]. Examples of sense-
making activities range from finding treatment for critical medical
conditions [7, 8] to anticipating acquisition of bio-weapons by for-
eign nations [43] to understanding racial context among American
soldiers during World War II [33] by collecting, organizing, and
comprehending information from various sources. While each of
these models address specific challenges, they all highlight the need
to organize the data.

A recurring behavior in sensemaking is the act of grouping rele-
vant documents in order to synthesize a common pattern, effectively
forming a cluster to reduce the workspace clutter [37, 44] that has
been observed in many visual analytic platforms [1,21,33,55]. Prior
work has shown that a machine could anticipate the user intent of
creating such clusters by observing their interactions with the sys-
tem [13, 16, 21]. Essentially the system could employ one of the
many cluster identification algorithms [23] to automate the process
of creating clusters, thus enabling the analysts to remain more fo-



cused on the high-level analysis of the data [18,19]. This approach of
coupling the user’s analytic interactions with the computational steps
to identify cluster is often termed as semantic interaction [19, 20].
For example, a user could move a document to a specific place with
the intention of creating a spatial construct within the workspace.
Therefore, a semantic-interaction-enabled model could anticipate
this action, and create the spatial structure for the user.

ForceSPIRE [18] explored the benefits of semantic interactions
on large two-dimensional displays, and showed how similarity could
be represented simply by moving documents closer to each other.
However, the parameters for the clusters were updated in the back-
ground, and there were not any explicit clusters for the users to
interact with. In recent years, VR researchers have been investi-
gating the benefits of analyzing 2D documents such as embodied
notes [42], and maps [47] in the 3D space. Lisle et. al [33] developed
Immersive Space to Think (IST) which allowed the users to create
spatial layouts with 2D multi-media documents in an immersive
space to perform sensemaking tasks.

In our research, we extended IST to investigate the mechanisms
of leveraging semantic interactions to automatically create explicit
clusters in a three-dimensional visual analytic tool. In our design
work, we explored the following research question: RQ1: What is
an appropriate level of automation for a clustering feature in an
immersive sensemaking system? We also sought to address two
additional questions through an experiment: RQ2: How does an
explicit clustering tool help the analysts organize an immersive
workspace? and RQ3: What are the benefits and challenges of
having semi-automated clusters in an immersive visual analytic
system?

With these questions in mind, we developed three different condi-
tions: Freestyle (informal clusters, no semantic interaction), Overlap
(explicit clusters, no semantic interaction), and Proximity (explicit
clusters, semantic interaction). We consider documents that do not
contain sufficient information to allow automatic clustering by the
system without any user interaction. Both Overlap and Proximity
allow the users to create and interact with explicit clusters. With
Overlap, the users have more control over creating the clusters, while
with Proximity, the system creates the clusters for the users by lever-
aging semantic interaction. Comparing Freestyle and Overlap would
help us evaluate the potential benefits of explicit clusters, while
comparing Overlap and Proximity would allow us to evaluate the
effects of the semi-automated clustering approach, and the tradeoff
between control and convenience. Our contributions include:

• The design of two interaction techniques providing explicit
cluster support, and a 2.5D visualization technique for clusters.

• An assessment of the benefits of explicit clusters in completing
sensemaking tasks in an immersive visual analytic system.

• An evaluation of the benefits and challenges of semi-automated
clusters and user-controlled clusters.

2 RELATED WORK

2.1 Sensemaking

Sensemaking is a cognitively difficult task that involves browsing
large amount of data to extract meaningful content, and inferring
new relations. Pirolli & Card proposed a model with two main loops
that complete this process: foraging and sensemaking [43]. The
foraging loop involves the analysts browsing the dataset to gather
evidence, while the sensemaking loop relies heavily on the success
of organizing the dataset by dividing it into clusters that help the
analysts generate a better understanding of the underlying data [52].

Sensemaking tools such as Analyst’s Notebook [2] and The Sand-
box [56] enabled users to organize and make connections between
data elements in a spatial workspace. Andrews et al. [1] demon-
strated how increased space provided an external memory for the
users while they made layouts to complete a sensemaking task. Im-
mersive Space to Think (IST) took this a little further by providing

the users an unconstrained three-dimensional space for their sense-
making process [34]. Some studies have explored possible designs
for interacting with groups of documents in the immersive space. For
example, Post-Post-it [32] was motivated by the physical metaphor
of post-it notes, and they developed interactions for creating, remov-
ing, and merging multiple groups in the immersive space. Luo et
al. [35] looked at the organization strategies followed in AR collabo-
rative applications, relying on the furniture in the physical space to
organize their documents.

We explore the effects of explicit clusters on users doing a simple
sensemaking task with an immersive visual analytic tool.

2.2 Semantic Interaction

Semantic interaction is defined as the process where the system can
capture the user action, interpret the user intent, map the user intent
to the underlying change in the spatial structure, and provide visual
feedback on the updated model within the visual metaphor [19].
Many of the sensemaking tools have found it useful to provide
users with a workspace enabling them manually organize spatial
representation of information [2, 32, 49, 56]. Semantic interaction
strives to enable a similar ability, without requiring the user to
manually create the spatial structures [18]. Instead, the goal of the
system is to learn from the interactions and co-create the layout.

ForceSPIRE [19] illustrated a set of semantic interactions for
analytic process, and explained how they are associated with ana-
lytic reasoning. For example, highlighting some text would mark
the importance of a phrase, or document movement would mean
similarity/dissimilarity with nearby/far documents. However, in
ForceSPIRE, the system largely takes the control of the layout away
from the analyst.

In our research, we wanted to explore how we can give most of
the spatial organization control to the analyst, with the system just
helping to identify and make explicit cluster structures within the
layout.

2.3 Clustering

Spatial analysis of data involves analysts rearranging documents
and creating spatial constructs including clusters [1, 21]. With ex-
plicit clusters, users are able to externalize their semantics of the
information into the workspace [19]. Clusters serve the purpose of
synthesizing timelines, classifications, or just organizing thoughts
in an external knowledge space [34]. In one interesting approach in
augmented reality, a system showed potential for organizing clusters
around physical objects in the real world [35]. In fact, humans are so
familiar with the notion of clusters in their regular 2D applications
that their ideas for clusters have transferred to the 3D applications
as well. Despite having three dimensional space with six degrees
of freedom, the users tend to consider two documents as part of
a cluster when one document is in proximity to or overlaps with
another document in the same plane [34].

Considering the common strategy of using clusters, we suggest
that it would be beneficial for the system to take care of the mundane
steps of creating a cluster, leaving users to be more concerned about
tasks that demand more human involvement. There are numerous
algorithms to identify clusters [22,29,36,40,41,48]. However, most
of these algorithms are designed to create clusters from an already
existing group of objects scattered in a workspace. Furthermore,
they are not equipped with parameters to adapt their outputs to ac-
commodate users interacting with the individual documents in the
cluster. Hence, they are not fit for identifying clusters in a visual
analytic process where the workspace keeps changing to reflect the
user’s mental model. There are visual analytic systems with inter-
active clusters [15, 46] that mostly focus on gaining insights from
an aggregated visualization of the dataset, and deprioritize the indi-
vidual data contents, thus making them unsuitable for sensemaking
tasks. Hence, finding alternative approaches to create cluster identifi-
cation algorithms for visual analytic tools remains an open research



problem.

3 GOALS AND RESEARCH QUESTIONS

Our research was designed to address how automation in clustering
can help participants organize their immersive analytics workspace
more effectively. That led us to ask three broad research questions.
RQ1: What is an appropriate level of automation for a clustering
feature in an immersive sensemaking system?

We wanted to know what amount automation of the clustering
process could facilitate users’ analysis, rather than designing a fea-
ture with too much automation that gets in the way. We reasoned that
a fully automated clustering feature could make the user lose control
over their workspace. What if, instead of thinking of automation as
the removal of human involvement, we imagined it as the selective
inclusion of human participation? The result would be a process that
harnesses the efficiency of intelligent automation while remaining
amenable to human feedback, all while retaining a greater sense of
meaning. We addressed this question through an iterative design
process (Section 4.1) before we moved on to our formal experiment.
RQ2: How does an explicit clustering feature help analysts
organize an immersive workspace?

We developed a set of clustering interactions such as creating,
expanding, removing, and merging clusters. Our hypotheses are that
having explicit clusters would make analysts faster in organizing
their workspace (H2a), would speed up the process of reorganizing
an existing workspace (H2b), and would make the final layouts of
the workspace more understandable and less ambiguous (H2c).
RQ3: What are the benefits and challenges of having semi-
automated clusters in an immersive visual analytic system?

We aim to understand how automating some (or all) of the cluster
interactions may affect user performance and satisfaction compared
to fully user-controlled or no cluster interactions. We hypothesize
that participants would prefer having more control over the clusters
rather than depending on the semi-automated technique (H3).

4 DESIGN PROCESS

To address RQ1, we performed an iterative design process in which
we explored the design space for semi-automated cluster interactions
for immersive analytics. We evaluated various clustering algorithms
and integrated the chosen algorithm into an interactive user experi-
ence. We implemented a semi-automated cluster creation technique
based on this design, along with two comparison techniques.

4.1 Design Evolution

Algorithm First, we needed a fast, iterative algorithm that could
detect clusters of arbitrary size, shape, and density. Most traditional
approaches [36, 41] to clustering rely on prior knowledge of the
number of the clusters K. Since the layout emerges throughout the
sensemaking process, there is no way to know in advance how many
clusters there will be. In addition, we need an algorithm to form
clusters on the fly as the user is creating the spatial layout, rather
than one that looks at a complete spatial layout to find the clusters.

Prior studies have proposed density-based [22, 29], and graph-
based clustering [40,48], which do not require prior knowledge of K.
Despite showing excellent performance on detecting clusters with
uniform data distribution, and ideal shapes, they fall short on clusters
varying in size, shape, density, and noise (e.g., DBSCAN can only
identify spherical clusters). As clusters formed during sensemak-
ing process can vary significantly in size, shape, and density [33],
these clustering methods cannot be applied. However, the Dirichlet
Process Mixture Model (DPMM) has shown promising results in
detecting arbitrarily shaped clusters with no prior knowledge of
K [3, 26, 27, 39]. In DPMM, every time a new data point is included,
it either joins an existing cluster, or starts a new cluster [9, 24]. The
flexibility makes DPMM particularly promising for users iteratively
browsing documents to create clusters.

User Experience Design We needed to understand when and
how this algorithm could be embedded in an analyst’s workflow
of organizing documents in the immersive space. We launched an
informal exploratory study among the authors to observe the effects
of different approaches. We envisioned a human-AI collaboration
where the users are able to focus on the analysis, and the algorithm
just augments the process by providing helpful assistance [50,51,53].

Creating spatial clusters has been associated with the semantic
interaction of ‘document movement’ [19]. Hence, there are two
possible answers to the question of ‘when’: the system automatically
applies the algorithm after every document movement, or the user
explicitly triggers the algorithm after multiple document movements.
However, the latter approach prompted a challenge: the results of
the algorithm after moving several documents may not correspond
to the user’s expectations. As we observed in our exploratory study,
misplacement of even a single document prompted the user to take
a step back, review all the documents since the last clustering, and
make sure every document was properly put in their intended cluster.
The whole process was time-consuming, annoying, and frustrating.
So, we resorted to applying the algorithm after every document
movement, which reduced the probability of a mistake, and reduced
the realignment cost (even if the algorithm gave an undesired result,
the user could rearrange the document immediately).

A second design consideration relates to which items should be
considered for automated clustering after every document movement.
We started with a fully automated system where all the documents
were given as input to the algorithm. This resulted in a lot of changes
to the workspace after each movement, which made users confused,
and the outputs did not always match the user intentions. Hence, the
users spent more time on rearranging the documents than completing
the task. After a series of design iterations, we concluded that the
user gets frustrated particularly when an already-formed cluster
is restructured by the system through the addition or removal of
unwanted document(s) without their involvement. So, we designed
our system to only consider the subset of documents that were not
yet in any cluster, and create cluster(s) with only those documents.
That left the users in control of other cluster-related interactions such
as expanding, removing, and merging (Section 4.3).

Finally, we needed to determine how the clusters should be visu-
alized. Typically, users of immersive analytic tools tend to create
clusters on two-dimensional planes, placing those planes in various
depths [32, 34], thus creating a 2.5-dimensional visualization. Fol-
lowing a similar strategy, we created a rectangular plane that had
the closest distance to all the documents in a cluster, and moved all
the documents to that plane. We also found the smallest possible
translations required for the documents to not overlap each other
while reflecting the layout specified by the user. We determined the
height and width of the rectangles based on spatial positions of the
documents on the outer edges, and made sure the rectangle held
every document in the cluster while leaving a small margin on the
borders so that users could easily grab and move the clusters.

4.2 Techniques

In order to understand the effects of the semi-automated clustering
technique, we implemented a semi-automated technique (Section
4.2.1), and a technique that was fully user-controlled (Section 4.2.2).
We also had a control technique without any cluster interactions
(Section 4.2.3). In all three techniques, the users could select and
move individual documents with a ray-casting interaction.

4.2.1 Proximity

This technique allowed the users to create explicit clusters in ad-
dition to interacting with the individual documents. After every
document movement, the DPMM algorithm was applied to all the
documents that were not part of any cluster. The algorithm returned
the documents with the clusters they belonged to. Based on the
output, the system created rectangular clusters for the documents



(Figure 1(a)&(b)). Essentially, from the user’s perspective, each
cluster contained documents that were in proximity to each other.

4.2.2 Overlap

In addition to all the individual document interactions, this condition
allowed the users to create explicit clusters by overlapping two
documents with each other. Any documents that touched each other
were highlighted with a yellow border (Figure 1(c)&(d)). This visual
feedback let the user know about the consequence of their action in
advance, so that the user could move the document away again if
they did not want the cluster to be created. Releasing the document
while it was still highlighted created a rectangular cluster that would
hold all the documents that were touching each other.

4.2.3 Freestyle

The user did not have any explicit clusters in this condition (Fig-
ure 1(e)). They could move around individual documents, create
labels, and move around individual labels.

4.3 Additional Cluster Interactions

In addition to creating clusters, the system allowed the users to
interact with the clusters in other ways.
Cluster Movement Similar to document movement, the users
could grab a cluster, move it around, and place the cluster anywhere
in the immersive environment.
Cluster Expansion/Reduction/Rearrangement Users could ex-
pand an existing cluster by adding new documents to it. New docu-
ments could be added by overlapping them with the cluster. Clusters
lighted up whenever they touched another document (not in the clus-
ter) providing the user a visual feedback on their action. The users
could also grab a document already in the cluster, and move it away
causing the cluster to shrink in size. The documents could also be
rearranged inside the cluster by grabbing a document, and moving it
to another position of the same cluster plane.
Cluster Merger The users could also merge two or more clusters
together to create one big cluster. A user could merge clusters by
grabbing a cluster and bringing it closer to another cluster so that
they overlap each other. All the clusters that were touching another
cluster would light up to provide visual feedback.
Cluster Removal The users could remove a cluster by moving
documents away from the cluster one by one until there was just
one document left, and the cluster was deleted. In the Proximity
condition, the lone document would then be considered as an input
for the next run of the algorithm.

5 EXPERIMENTAL DESIGN

In this section, we present the various aspects of the experiment
that we conducted to find out how explicit clusters help the an-
alysts (RQ2), and investigate the benefits and challenges of the
semi-automated clustering technique (RQ3).

We conducted a within-subjects experiment to evaluate the effect
of our independent variable, clustering technique, on dependent
variables, including interaction velocity, cluster movement time,
cluster size, and the cluster validation score.

5.1 Experimental Task

The goal of our experiment was to understand how the ability to
create/manipulate explicit clusters, and the ability of the system to
automatically create new clusters, affected performance, usability,
and strategy during a simple sensemaking task. With that goal, we
chose a document classification task with common recognizable
items from three datasets: Food, Animal, and Vehicle, which is
similar to a card sorting task [54]. Each set consisted of 30 cards,
each of which showcased an image of an item accompanied by its
name on the side (Figure 1(f)).

The images of the dataset were chosen with the criteria that
they should be familiar to most people and easily distinguishable.

Additionally, we wanted to observe the reorganization strategy of
the users when they encountered new data items while they already
had an organized workspace. Hence, we split the datasets into two
subsets of 15 cards. When the users completed the organization of
the first subset, we presented the second half of the dataset, which
the users had to incorporate in their already existing workspace.

We wanted to encourage the participants to create a tidy
workspace with meaningful sets of cards that could be presented to
an audience. Therefore, we likened the workspace to an exhibition
room, and gave the participants the role of a curator. The participants
were instructed to group the cards into clusters in a way that made
sense to them. They were told that the final layout should be an exhi-
bition space for kids who can learn to recognize the items from the
curated groups. The participants also had to come up with a relevant
label for each of the groups. For each condition, the participants had
ten minutes to curate the exhibition space with 30 cards.

5.2 Apparatus

We used a Varjo XR-3 head-worn display 1 running on a desktop
PC with an Intel i9-9900k processor and an NVIDIA GeForce RTX
2080 Ti graphics card. User movement was tracked by a SteamVR
2.0 Lighthouse tracking system covering a four-by-eight meter space
that we kept clear of obstacles. The application was implemented
using Unity v2020.3.9. The DPMM algorithm was implemented
using the sklearn library in Python v3.8, communicated with the
Unity application via a local server-client port.

The user held one Valve Index controller 2 to interact with the
documents. As one of the most effective selection technique [4, 33],
we chose a ray-casting method with depth control for selection
and manipulation of documents within the workspace. A virtual
ray emanated from the controller, and the first document the ray
intersected could be selected by pressing down the trigger. The
selected document stuck to the ray as the user moved the controller
around. The user could use the joystick to change the distance of the
selected document from its initial position along the ray. Text input
for creating labels was achieved by using a pass-through AR “desk
portal” that allowed the user to view and interact with a keyboard
on a tracked wheeled desk. This afforded the user the ability to put
down the Index controller and then type on a keyboard as they might
do at a traditional computer workstation.

5.3 Participants

We recruited 27 participants (10 females) with a minimum age of
20 years and maximum age of 39 years old (µ = 26,σ = 4). Six
participants had no prior VR or AR experience, while ten had only
used VR or AR once or twice, and the rest used VR or AR more than
twice. Two participants wore contact lenses, while three used glasses,
and the remaining 22 had uncorrected vision. The experiment was
approved by the university’s institutional review board.

5.4 Procedure

We split our study into five phases: pre-study, training, main study,
subjective assessment, and post-experiment interview. The training,
main study, and subjective assessment phases were repeated for each
of the three conditions, while the pre-study and post-experiment
interview phases were conducted once per participant.
Pre-Study During the pre-study phase, we sent out a questionnaire
along with the recruitment email to collect demographic information,
understand their experience with VR/AR, and to schedule a time for
the experiment. On the scheduled day, we presented the participant
an informed consent form to read and sign. We briefly explained the
goal of our experiment, and allowed them to get familiar with the
physical space. This phase lasted five minutes on average.

1https://varjo.com/products/xr-3/
2https://store.steampowered.com/app/1059550/Valve Index Controllers/



Training In this within-subjects study, the participant experienced
all three conditions. We counterbalanced the order of the conditions
according to a Latin square to avoid bias for any particular condition.
For each condition, we demonstrated how the clustering technique
worked with two physical cards followed by a training session in
VR. We used a set of ten cards for this session that were not in the
main datasets. If it was the first condition, we started the training
by showing the participant the boundaries of the tracked area, and
teaching them how to interact with the cards with the controller. The
participant also learned how to create labels with the keyboard seen
through the “Desk Portal”. We proceeded to show the participant
each feature of the clustering technique, and allowed them to explore
the environment and practice the controls. To help in their learning,
we gave them a set of tasks which were designed so that the partici-
pant got to try out all the features of the clustering technique. The
participants spent 5-7 minutes on this phase.
Main Study When the participant completed the given tasks,
and was satisfied with their preparation, we launched the main
study that involved the participant performing the experimental
task described in Section 5.1 with the clustering technique they
just learned. An experimenter was always present in the room to
a) ensure the participant did not hit any physical obstacle, and b)
provide the second half of the dataset as soon as they were done
with the first half. The participants took an average of 8.44 minutes
per technique for this phase.
Subjective Assessment After indicating that they had completed
the main phase, the participants then would start the in-VR pre-
sentation. This involved an experimenter posing as the audience
and asking the participant for a tour of the exhibition space. This
prompted the participant to describe the clusters they formed, and
explain any spatial relationships they used during the classification.
Following the presentation, we helped the participant take off the
headset. We presented them a NASA Task Load Index (TLX) ques-
tionnaire [25] for measuring the mental workload after experiencing
the condition, and a System Usability Scale (SUS) questionnaire [28]
to collect the subjective assessment of the usability of the condition.
This phase took five to ten minutes to complete per technique.
Post-Experiment Interview Upon completion of all three con-
ditions, we wanted to understand the participant’s preference. We
isolated seven different relevant scales from the NASA TLX and
the SUS questionnaires, and asked the participants to rank the three
conditions based on: ease of use, comfort, performance, learnability,
usefulness, mental workload, and physical workload.

Finally, we conducted a semi-structured interview with a series
of open-ended questions. The interview was designed to gather
feedback about the three conditions from different perspectives. We
asked the participants about their user experience, what features
they liked, and what features they would add to improve the orga-
nization experience. We also asked which of the three conditions
they would choose for their daily organization tasks (and why), what
features were useful or were frustrating, and if they had any general
comments. This phase took between ten to fifteen minutes.

5.5 Data Collection and Measures

We collected a variety of data in order to measure the participants’
actions, preference, and the cluster outputs during the experiment.

We screen-recorded the main study (seen from the participant’s
POV) using the Varjo Desktop Application’s recording feature. This
allowed us to review what the participant was doing, and revisit the
evolution of their workspace organization after the experiment. We
also kept a log of all user interactions with the cards and clusters
( with associated time-stamps) in an external file. This gave us an
opportunity to analyze their action intents and results with precision.
We also recorded the final positions of all the cards, clusters, and the
labels that allowed us to see the final layout of the workspace, and
compare how neat the workspace was for the three conditions.

Figure 2: Interaction velocity in Proximity is higher than Freestyle
and Overlap. Despite having clusters, interaction velocity in Overlap
is not different from the interaction velocity in Freestyle.

Figure 3: Interaction velocity changes in the second session. In
Overlap, the users are faster in the second session.

We used the Qualtrics website to collect answers from the pre-
study questionnaire, NASA TLX questionnaire, and the SUS ques-
tionnaire. The answers from the subjective assessment phase, and
the post-experiment interview were recorded using Google Pixel’s
Recording app that also transcribed the audio. We reviewed the
transcriptions for possible errors, and used them for further analysis.

6 RESULTS

6.1 Quantitative Analysis

6.1.1 Interaction Velocity

We define Interaction velocity as the distance the participant moves
a card per second, and we use this as a measure of interaction
efficiency. A one-way ANOVA revealed a statistically significant
effect of condition on interaction velocity (F = 18.3, p ≤ 0.001). In
post-hoc analysis with Bonferroni correction, we found very strong
evidence (Figure 2) that the mean interaction velocity in Proximity is
larger than both Freestyle (p ≤ 0.001, cohen’s d= 0.3), and Overlap
(p ≤ 0.001, cohen’s d= 0.2). There was no significant difference in
mean interaction velocity between Freestyle and Overlap .

We ran further analysis to understand how the participant be-
haviors changed over time during a condition. As mentioned in
Section 5.1, each condition was split into two sessions. For each
condition, we performed Student’s t-test to understand how the inter-
action velocity changed in the second session compared to the first
session (Figure 3). We found that interaction velocity significantly
increased in the second session of Overlap compared to the first
session (t = 11.09, p ≤ 0.001, cohen’s d= 0.2). There was no sig-
nificant difference of interaction velocity between the two sessions
for either Freestyle or Proximity.

6.1.2 Reorganizing the Workspace

We wanted to analyze the efficiency of the participants in the differ-
ent conditions when they had to rearrange an existing workspace.
We looked at the time taken to move entire clusters, and how it
varied depending on the number of documents in the cluster.

Both Overlap and Proximity conditions had explicit clusters, thus



Figure 4: Cluster movement times in each condition, compared to
number of cards in the cluster. The blue line is the regression line
for Freestyle, while the blue shaded area is the confidence interval
for the regression estimates. In Overlap and Proximity, the cluster
movement time stays constant (orange and green lines respectively).

allowing us to analyze the cluster movement time from the log files.
However, the Freestyle condition did not have any explicit clusters,
making the analysis of the cluster movement time non-trivial. We
analyzed this by reviewing the screen capture of the participant
actions in the Freestyle condition. We identified a group of cards
as a cluster if a) the participant created a label close to the group of
cards, or b) the intra-card distance was smaller than the distance to all
the adjacent groups of cards. The cluster identification was verified
by the in-VR presentation of the workspace by the participant at the
end of their session. We considered an action as a cluster movement
if the participant moved two or more documents of the same cluster
from one place to another through two or more consecutive actions.

We plotted the cluster movement times against the number of
cards in each cluster (Figure 4). Pearson’s correlation test revealed
that the cluster movement time in Freestyle is positively linearly
correlated with the number of cards in the clusters (coe f f f reestyle =
0.56), while in Overlap and Proximity, the cluster movement time
has no significant correlation with the number of cards in the cluster
(coe f foverlap =−0.023, coe f fproximity =−0.017).

6.1.3 Cluster Size

As we saw in Figure 4, the participants tended to create larger
clusters in Proximity and Overlap than in Freestyle. This prompted
us to analyze the effect of condition on average cluster size which
was determined by the number of cards in the cluster.

A one-way ANOVA revealed that there was a statistically signifi-
cant effect of condition on the cluster size (F = 10.34, p ≤ 0.001).
In post-hoc analysis with Bonferroni correction, we found evidence
(Figure 5) that the mean cluster size of both Overlap and Proximity
are significantly higher than the mean cluster size of the Freestyle
condition (between Freestyle and Overlap: p ≤ 0.001, cohen’s d
= 0.5, between Freestyle and Proximity: p ≤ 0.05, cohen’s d= 0.4).

6.1.4 Workspace Neatness

To calculate the neatness of the workspace quantitatively, we mea-
sured the Silhouette Scores (SS) [45] of each of the participants for
the three conditions. SS is a measure of how similar an object is
to its cluster compared to other clusters. SS is computed using the

Figure 5: Average cluster size in Freestyle is lower than Overlap and
Proximity.

Figure 6: Silhouette Score in Freestyle is higher than the Silhouette
Scores in Overlap and Proximity.

mean intra-cluster distance, and the mean nearest-cluster distance
for each sample. A high value (max=1) of the SS would mean that
the clusters are well-defined while a low value of zero would indicate
that the clusters are hardly distinguishable in the workspace.

We found that condition had a statistically significant effect on SS.
Post-hoc analysis with Bonferroni correction revealed (Figure 6) that
the mean SS of both Overlap and Proximity are significantly lower
than the mean SS of the Freestyle condition (between Freestyle
and Overlap: p ≤ 0.001, cohen’s d= 2.2, between Freestyle and
Proximity: p ≤ 0.001, cohen’s d= 1.8).

6.1.5 Workload and Usability

We found no significant difference in the NASA TLX Scores among
the three conditions, nor did we find any significant difference in the
System Usability Scales [11] among the three conditions. However,
the average SUS scores for all three conditions were higher than 85,
which is considered “Excellent” [5].

6.2 Qualitative Analysis

For qualitative analysis, we went through the answers in the post-
experiment interview. We started by transcribing the interviews for
each participant, and putting them all in the same document. First,
we generated initial codes for each response. We found common
themes among the codes, and proceeded with defining and naming
them. We went through the initial set, and looked for similar themes
that could be combined, leading us to a smaller set of themes. After
a series of iteration, we ended up with three major themes describ-
ing factors participants felt most influenced their experience with
clusters in the experiment: Convenience, Control, and Creativity.

6.2.1 Convenience

The participants preferred their system to be easy, fast, and conve-
nient to make sure not much thought was required for organizing the
clusters. The participants found that although the Freestyle condition
was the easiest to learn among the three, having explicit clusters
definitely made the organization part of the task more convenient.



They said it was faster, and it required less awareness of the cards in
the clusters individually, thus reducing cognitive effort:

“Definite clusters reduce effort to manually organize the
images in a way that defines a group.” (P019)

All but three of the participants preferred one of the conditions with
explicit clusters (Proximity or Overlap), rather than the no-cluster
condition (Freestyle). 22 out of 27 participants (81.5%) specifically
called out the explicit clusters to be a useful feature, particularly
when they had to reorganize their workspace:

“I can move all of them as a group to wherever you like.
Also, I can remove one card without breaking the entire
group. That was the most convenient feature.” (P016)

However, the comparison of the two conditions with explicit clus-
ters was not as straightforward. While some participants liked the
Overlap condition for having full control over the clusters, more
participants (20 out of 27) preferred the Proximity condition specifi-
cally because of its similarity with the Freestyle condition in terms
of simplicity. Participant P014 put it this way:

“It [Proximity] was as easy as Freestyle, with the added
benefits of having clusters.”

Also, the participants did not like overlapping cards as “you have to
consciously make an effort to bring the images very close to each
other, and see the color changes to make a cluster” (P003).

6.2.2 Control

The desire to have control over the workspace divided the partic-
ipants into two factions. One faction (18 out of 27 participants)
thought having control over every aspect of the clusters was distract-
ing, and preferred to have the system take care of the clusters while
they focused more on completing the task. They chose the Proximity
condition over the Overlap condition because of its assistive feature:

“As clustering is kind of auto, I don’t have to think about
whether it’s cluster or not. That saves my time.” (P001)

Participants also shared how the Proximity condition offered better
performance by making them faster in their organization task:

“As long as the cards were close enough, it grouped itself.
I was able to organize them much quicker.” (P010)

The rest of the participants were in favor of the Overlap condition
because it offered full control over their workspace. Since there
was a definite action to create clusters (overlap), the participants
were always aware of the newly developed clusters prior to their
existence. This gave them a sense of control over their workspace.
There were three participants who were frustrated with the Proximity
condition as they were losing control over their workspace because
of unwanted clusters. According to Participant P002,

“Sometimes [Proximity] would create cluster by itself
even though I did not want it to ... I would have to put
more effort to put them far enough so that they do not
create a cluster.”

Furthermore, the visual feedback on their action (highlighting the
overlapping documents) helped them to see into the future before
making their final decision. That enabled them to make split second
decision changes without causing major updates to the workspace:

”It’s only easier to Overlap than bringing stuff closer and
just hoping them to make a cluster.” (P015)

6.2.3 Creativity

While most of the participants liked having clusters, there were three
participants who preferred the Freestyle condition over the other
two. All three of them reiterated the necessity of having creativity in
their organization that they could not achieve if there were explicit
clusters. They wished to have control over the three-dimensional
positions of the documents in the same cluster to develop clusters
with various size and shape. Participant P004 said,

”Freestyle was the quickest to adapt and also the way to
be the most creative.”

Figure 7: Final layout of participant P012 who preferred the
Freestyle condition. They created sub-clusters (marked by dotted
and solid circles) inside a bigger cluster (left-most).

For example, Figure 7 shows the final layout of a participant who
preferred Freestyle for the creativity it allowed. They created five
clusters. In the left-most cluster, which was labelled “run on ground”
by the participant, they made subdivisions inside the cluster. They
kept regular ground transports (bus, taxi, rickshaw, bicycle, go-
cart) in one sub-cluster, while keeping the two ground transports
used in construction (crane, tractor) in another sub-cluster. The
sole document on the top represents a military ground transport
(Humvee) that the participant kept separate from the others.

6.3 Suggested Features

Finally, participants presented several additional features that they
would want in a clustering tool. First, in addition to creating clusters,
participants wanted the system to automatically create or suggest
labels for the cluster based on its contents. Second, even in this
simple classification task, participants wanted to create subgroups
inside each group. Third, participants wanted to have auditory
feedback for when clusters were created, expanded, or deleted.

7 VALIDATION STUDY

Although our findings from analyzing the interaction velocity sup-
ported our hypothesis regarding the clusters making the participants
faster (H2a), they went against our hypothesis regarding the partic-
ipants preferring having more control over the clusters (H3). This
prompted us to revisit our techniques from a critical perspective. We
noticed that even though the aggregated results showed the Overlap
technique to make the participants slower, they were a lot faster
by the end of their task compared to when they started. Further
investigation into the video screenings of the participants’ sessions
revealed that many participants were actually having issues to meet
the criterion of Overlap to create clusters. They ended up performing
consecutive interactions with the same document over a longer pe-
riod of time, thus, making them slower in their overall classification
task. In their interviews, they mentioned that they were struggling at
first because they were having trouble with the ray-casting technique
to bring the cards to an overlapping position with another card. As
evidenced by prior studies, ray-casting does not afford rotation of
a card in place since rotating the controller also causes translation
of the card at the end of the ray [10, 31]. The farther the card is,
the worse the effect becomes. In addition, the joystick to change
distance between the card and the participant was too sensitive, thus,
making it harder to cause a card to align with another. With every
push or pull of the joystick the card would either go behind or come
to the front of another card instead of overlapping it.

We hypothesized that these issues could be the deciding factors
for the participants to prefer Proximity over Overlap. Therefore,
we replaced the selection method with HOMER [10], a technique
where after selecting a card with a ray, instead of the card becoming
attached to the end of the ray, the virtual hand moves to the card po-
sition and is attached to the card. Thus, HOMER uses the metaphor
where the user is grabbing the card with their own hand regardless
of the card’s distance from the user, enabling them to rotate the card
in place by rotating the physical hand. Upon releasing the card, the



virtual hand would return to the position of the physical hand.
With the HOMER modification, we ran a small within-subjects

validation study with four participants and two conditions: Overlap
and Proximity (since we wanted to see if HOMER improved the
results for Overlap). The results from this validation study turned
out to be comparable with the original experiment. We found that
participants still struggled in the first session of Overlap, and they
got faster by the end of the second session. There was still no effect
of session on interaction velocity for Proximity. Two participants
preferred Overlap because of having more control, and two partici-
pants chose Proximity because of its ease of use. Since there was no
overwhelming evidence that the change to HOMER changed our re-
sults, we concluded that the ray-casting method was not the primary
factor for the participants to prefer the semi-automated technique in
the original experiment. Rather, they liked the Proximity technique
for its intuitive automated assistance in creating clusters.

8 DISCUSSION

Even though we started our study with a motivation to automate
the clustering process, our design exploration revealed how a fully
automated system could do more harm than good which aligns with
findings from prior works [17]. Users were frustrated, annoyed,
and spending more time on fixing the automated outputs rather
than progressing with their analysis. Through an iterative co-design
process with users, we were able to reduce the automation such that
the system had control over only the creation of clusters, while users
took over the other aspects of cluster interaction. Essentially, we
ended up employing human-in-the-loop design in cluster interaction,
making it a semi-automated clustering technique. Although we
found an appropriate automation level, there were still some issues
with automation having undesired effects.

In our experiment, we found that Proximity made interaction
faster than the other techniques (partially supporting H2a), and the
participants preferred it over Overlap because of it being easier to
use, even though both had explicit clusters. However, upon further
examination, the analysis shows that the participants were slower in
Overlap only for the first session. By the end of the second session,
they became as fast in Overlap as in Proximity. This suggests that
Overlap required some learning, but was not inherently slower.

We also found evidence to support our hypothesis (H2b) that
explicit clusters made it easier for participants to complete their
task, particularly when they had to reorganize an already existing
workspace. We showed, and the participants reiterated, that the
moving time for clusters in the Overlap and Proximity techniques
was faster, and independent of the number of documents, while
cluster moving time in the Freestyle technique increased linearly
with the number of cards in the cluster. However, the participants
could reach a faster moving time with a multi-object selection feature
in the Freestyle technique. However, finding a standard multi-object
selection technique is still an open research problem [12,30,38], thus,
making it out of our study’s scope. In addition, as the participants
found it easier to make changes with explicit clusters, they ended
up creating larger clusters when they had explicit clusters, which
allowed them to move many documents at the same time.

However, the clusters did not make the workspace more under-
standable and less ambiguous from a quantitative point of view.
Silhouette Scores (SS) for Overlap and Proximity tended to be close
to zero, indicating that there were actually overlaps among the clus-
ters, while SS for Freestyle was closer to one, implying that the
clusters formed in that condition were more distinct, contrary to
our hypothesis (H2c). Participants in the IST have showed similar
trends in prior studies [34] where they created dense spatial layouts
to organize their mental models. However, our video analysis reveals
that despite having overlaps in the clusters, the users considered the
workspace more presentable, as the explicit borders around each of
the clusters helped them distinguish one cluster from the other. On
the other hand, in Freestyle, the participants had to depend solely

on the inter-cluster distance to keep them distinct. We believe this
finding has a greater implication in working with larger datasets as
it shows that having explicit clusters allows the users to require less
space, and yet have distinguishable layout.

Between the two conditions with explicit clusters, the participants
preferred the semi-automated Proximity technique. Even though
they acknowledged that the Overlap technique allowed them to have
more control over their layout, they liked Proximity because of its
simplicity and ease of use, which contradicts our hypothesis (H3).
Participants found it convenient to create clusters in collaboration
with an AI which made their spatial organization process “as easy
as freestyle with the added benefits of the explicit clusters”.

Finally, our experiment extracted the desired features that users
want in an immersive clustering tool. The Proximity technique
showed promise with its ease of use, and the ability to make the
users faster. The participants liked Overlap for its control over the
workspace, and instinctive visual feedback for cluster formation.
Even the Freestyle technique was preferred by some of the partici-
pants because of the freedom it offers. An ideal clustering technique
should have the convenience of automatic clustering, but also give
the users a sense of control with meaningful visual feedback. Once
the clusters are formed, the size, shape, and the structure of the
clusters should be open to customization.

9 LIMITATIONS

We kept our task simple so that the users could complete the classifi-
cation task easily with the clustering technique they were provided.
This allowed us to disregard the complexities around navigating
complex datasets, and narrow our focus on comparing the users’
perception of clustering techniques. Future studies need to design
a task involving more than simple classification, and using a more
complex dataset involving large textual documents, if we want to
have a more ecologically valid evaluation of clustering techniques
for sensemaking tasks in immersive visual analytic tools.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we presented the results of our investigation into how
automating clustering techniques can help analysts working with
an immersive visual analytic tool to organize documents during a
sensemaking task. We found that users are not comfortable with
fully automated systems, as they can tend to deviate from the user
intentions. We proposed a semi-automated clustering technique that
proved to make users faster, and the users found it more convenient
to create spatial structures in collaboration with an AI. This suggests
there is significant potential for other intelligent assistance features
in complex immersive analytic workflows. We showed how the semi-
automated approach can be improved by adding visual feedback,
and affording more creativity to the users. In addition, we found that
explicit clusters made the final layouts formed by the users more
presentable, requiring less space, and clusters allowed the users to
reorganize their workspace in a faster fashion independent of the
document count in the cluster.

One of the future directions of this research will be investigating
the effects of the clustering techniques on a more complex task
involving textual datasets. We will also explore additional intelligent
features for immersive sensemaking, such as auto-labelling clusters,
searching for new similar documents from a larger data space, and
updating the level of details of the clusters based on the user’s needs.
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