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Figure 1: EyeST offers a set of recommendation cues to help analysts in the sensemaking task. a) Document color represents 
their global interest to the analyst and green threads represent connections between documents. b) The list of unread documents 
is sorted by their global interest. c) Recommended documents related to a given document are represented as tabs. The tabs 
display the words that are shared with the recommended document. The background color of the tabs represents their global 
interest. 
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Abstract 
Sensemaking is a complex task that places a heavy cognitive de-
mand on individuals. With the recent surge in data availability, mak-
ing sense of vast amounts of information has become a significant 
challenge for many professionals, such as intelligence analysts. Im-
mersive technologies such as mixed reality offer a potential solution 
by providing virtually unlimited space to organize data. However, 
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the difficulty of processing, filtering relevant information, and syn-
thesizing insights remains. We proposed using eye-tracking data 
from mixed reality head-worn displays to derive the analyst’s per-
ceived interest in documents and words, and convey that part of the 
mental model to the analyst. The global interest of the documents 
is reflected in their color, and their order on the list, while the local 
interest of the documents is used to generate focused recommenda-
tions for a document. To evaluate these recommendation cues, we 
conducted a user study with two conditions: a gaze-aware system, 
EyeST, and a “Freestyle” system without gaze-based visual cues. 
Our findings reveal that the EyeST helped analysts stay on track 
by reading more essential information while avoiding distractions. 
However, this came at the cost of reduced focused attention and 
perceived system performance. The results of our study highlight 
the need for explainable AI in human-AI collaborative sensemaking 
to build user trust and encourage the integration of AI outputs into 
the immersive sensemaking process. Based on our findings, we 
offer a set of guidelines for designing gaze-driven recommendation 
cues in an immersive environment. 
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1 Introduction 
Visual Analytics (VA) is “the science of analytic reasoning facilitated 
by interactive visual interfaces” [74]. By coupling human intuition 
with computational analysis, VA enables humans to address chal-
lenges that would otherwise be difficult due to their scale and 
complexity. The primary objective of VA is to provide tools that: 
(a) synthesize information and extract insights, (b) detect expected 
patterns and reveal unexpected correlations, (c) deliver timely, de-
fensible, and understandable assessments, and (d) effectively com-
municate these assessments [41]. 

Building on the concept of visual analytics, the field of Immersive 
Analytics (IA) aims to enhance the interaction between analysts 
and data by offering an embodied experience in a fully-surrounding 
three-dimensional space. IA extends beyond traditional interfaces, 
creating a three-dimensional environment where analysts can ex-
plore, analyze, and derive insights more efficiently. The primary 
goal of immersive analytics is to “explore the applicability and de-
velopment of emerging user-interface technologies to create more 
engaging and immersive experiences and seamless workflows for data 

analysis applications” [12]. Skarbez et al. further linked IA to the 
sensemaking process, defining it as “the science of analytic reason-
ing facilitated through immersive human-computer interfaces,” [71]. 
These interfaces are designed to support the synthesis of informa-
tion through abstract data visualizations while taking advantage 
of embodied interaction. Unlike traditional VA systems, IA sys-
tems introduce new possibilities, such as enhanced depth cues, a 
360-degree interaction space with six degrees of freedom, fewer 
distractions, improved spatial comprehension, and integrated eye-
tracking sensors [8, 54]. 

One thread of IA research called Immersive Space to Think (IST) 
focuses on using immersive space to organize and reason about 
documents, notes, and labels [49]. The immersive spatial layout lets 
the analyst project their mental model into a virtual space, allowing 
them to externalize and interact with their thoughts, much like 
handling a physical object. 

While the IST concept enhances the sensemaking process with 
memory externalization and improved recall [44], sensemaking 
can still be overwhelming as the dataset expands. Hence, IA tools 
need to evolve to provide additional intelligent aids to analysts to 
help them manage and understand larger datasets. Wenskovitch et 
al. envisioned future VA/IA tools as “a mutually intelligible com-
munication channel between humans and AI/ML 1 models, where 
human and machine teammates are in sync with their roles and re-
sponses to each other’s actions” [80]. Their vision highlights two-way 
communication in which the AI learns from analyst interactions 
to improve human-machine collaboration and enhance team per-
formance. Through explicit or implicit feedback from the analyst, 
the machine develops an understanding of the analyst’s strategy, 
allowing it to act as a teammate, rather than an all-knowing entity. 

To better define the roles of humans and machines, Sheridan 
and Verplank proposed the concept of Level of Automation (LoA) 
in human-centered AI decision-making tasks [70], which was later 
refined by Parasuraman et al. [60]. Their taxonomy describes ten 
levels, ranging from full human control for LoA(1) to complete ma-
chine autonomy for LoA(10). Mackeprang et al. demonstrated that 
users perform better but face confusion with lower LoA systems, 
while higher LoA systems provide a seamless but error-prone expe-
rience [53], causing them to suggest choosing LoA(5) as the sweet 
spot for human-AI collaborative ideation tasks. However, finding 
the sweet spot for automation still depends largely on the domain. 

Building on the search for the optimal LoA, VA tools have intro-
duced semantic interaction, where the system learns from explicit 
analyst actions during sensemaking, such as highlighting text or 
grouping documents, to build an interest model for the analyst. 
The model can be used later for automatic layout adjustments [24], 
and/or generating smart recommendations aligned with the ana-
lyst’s topic of interest [9]. IA systems, with their integrated sen-
sors, offer the potential to advance this concept by introducing 
rich semantic interaction, in which the system could model an-
alyst interest based on implicit, embodied interactions, such as 
gaze. Gaze can be an implicit, non-intrusive way to gather valuable 
insights about a person’s mind, revealing their thought process dur-
ing cognitively heavy sensemaking tasks, and even indicating the 

1AI=Artificial Intelligence, ML=Machine Learning 
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perceived relevance of different topics of interest within a complex, 
interconnected dataset [73]. 

We utilized the gaze-based metric presented by Tahmid et al. [73] 
in an IST-like IA system to develop an intelligent recommendation 
system, driven by analyst’s gaze data during sensemaking in the 
immersive space. We call this Eye-Enhanced Immersive Space to 
Think, or EyeST for short. We developed two levels of automation 
for different kinds of recommendations. First, EyeST tracks the 
analyst’s overall interest in real time, reordering the list of unread 
documents in decreasing order of the analyst’s global interest, and 
color-coding all documents based on their global interest. This cue 
operates at a high LoA, as it is unobtrusive and requires little to 
no analyst intervention to be of use. Second, EyeST generates a 
list of recommendations for each document, based on both the 
analyst’s global and local interest in that specific document. It is 
up to the analyst to decide which of these recommendations they 
want to read. These local recommendation cues operate at a low 
LoA, offering some automated support, but leaving the analyst to 
make the final decision based on the cues. 

We conducted a user study to compare the gaze-based recom-
mendation system (EyeST) with a control condition offering no 
recommendation cues (Freestyle IST). Our findings demonstrate 
that the recommendation cues helped analysts manage their time 
more efficiently by reading more essential documents, whereas 
Freestyle analysts were often sidetracked by distractor information. 
However, EyeST analysts were often confused by the local recom-
mendations, leading to reduced attention during sensemaking and 
a decrease in perceived task performance. Feedback from analysts 
allowed us to identify the design challenges of the local recommen-
dations that led to these results. We conclude by offering guidelines 
for improving gaze-based recommendation cues in immersive ana-
lytics tools. In summary, the following are the contributions of this 
work. 

(1) A gaze-driven intelligent recommendation system for IA 
tools. 

(2) The design of recommendation cues for IA to reflect the 
analyst’s global and local interest. 

(3) An understanding of the benefits and challenges of gaze-
driven recommendation cues. 

(4) Design guidelines for improving recommendation cues in 
IA tools. 

2 Related Work 
In this section, we review prior research related to immersive sense-
making and gaze-driven recommendations. 

2.1 Sensemaking and Semantic Interaction 
Pirolli and Card defined sensemaking as a complex cognitive task 
that involves browsing unstructured information, extracting mean-
ingful evidence, and synthesizing new insights about one or more 
topics in a set of documents [64]. This series of actions can be di-
vided into two major parts. First, an analyst collects evidence by 
browsing the dataset (foraging). Second, the analyst spends time 
on organizing and synthesizing information (sensemaking) [78]. 
Visual Analytics (VA) focuses on developing interactive tools to 

support sensemaking by allowing analysts to read, annotate, orga-
nize, and synthesize in a visual, often spatial layout. To address the 
handling of large amounts of data, researchers have used large, high-
resolution displays that can become part of the distributed cognitive 
process, providing both external memory and a semantic layer [4]. 
However, for real-world sensemaking tasks, the dataset still may 
not be able to fit on large two-dimensional displays. Lisle et al. [49] 
proposed the use of an immersive, expansive, three-dimensional 
space to analyze large multimedia datasets, and called it Immersive 
Space to Think (IST). The immersive experience allowed analysts to 
follow creative spatial organization strategies [50] during different 
stages in the sensemaking process [21], and improve their overall 
understanding of the dataset [49]. 

Space solves the issue of seeing and organizing the whole dataset. 
However, analysts still need assistance to find information and 
synthesize information from the data. ForceSPIRE [24] proposed 
statistical models steered by semantic interaction where the model 
learns from the analyst’s actions such as searching, highlighting, 
annotating, and repositioning documents during sensemaking, and 
co-creates the spatial layout with the analyst. StarSPIRE [9] built 
on this idea to utilize the analyst-perceived information relevance 
from the semantic interaction to develop a relevance-based for-
aging model. The underlying assumption for these models is that 
if an analyst highlights or searches for a term, it is considered 
‘relevant’ to their cognitive process, and they would be more in-
terested in exploring documents about similar topics [63]. Here, 
‘relevance’ reflects the perceived closeness in meaning between 
the term and the task at hand. Analysts are also prone to keep 
‘similar’ documents in close proximity in both large 2D displays [9] 
and immersive spaces [47, 72]. All of these analytic tools rely on 
explicit analyst interactions to enhance the analyst’s sensemaking 
process. With mixed reality headsets with built-in sensors such as 
eye-trackers, IA research has a new window of opportunity to use 
subtler, more implicit user interactions to build intelligent models 
for sensemaking [11, 52]. 

2.2 Rich Semantic Interaction 
One of the primary motivations behind developing semantic inter-
actions was to keep the analyst focused on their cognitive process 
while the system takes care of the intermediate steps such as spatial 
organization [24], and information retrieval [9]. With traditional 
computing setups, the only way for the system to infer the ana-
lyst’s intent is through cursor movement or keyboard input, but 
human behaviors have much more nuance that could be leveraged. 
Researchers have shown that a system can infer the user’s intent 
from a variety of human behaviors such as motion/gesture [6, 68], 
speech [22, 27], eye gaze patterns [19, 48], and brain activity [13, 58]. 
Most of these actions, if not all, can be captured by a singular device 
with Mixed Reality technology. This opens up a new avenue in the 
field of semantic interaction where the system can infer the ana-
lyst’s intent from natural interactions in an immersive environment. 
We call this rich semantic interaction, defined as follows. 

Rich semantic interaction is a mode of user-system 
interaction where the system can infer the user’s inten-
tions from a wide range of natural human interactions 
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in the immersive space, such as motion, speech, eye gaze, 
and brain signals. 

One aspect of the sensemaking process that can be enhanced 
through such high-level inference is information retrieval [9], which 
helps analysts browse the dataset more efficiently and effectively. 
Such an inference would involve the system being able to identify 
the user perception of each document they are going through, their 
topics of interest, and their path of reasoning towards the solution 
of the sensemaking task. We suggest that eye gaze can provide 
insight into each of these. 

2.3 Role of Eye Gaze in Reading 
Eye gaze has been shown to be closely linked to cognitive process-
ing [38, 39, 75], mental workload [62], reading comprehension [1], 
and emotional expression [79]. Just and Carpenter [38] found neg-
ligible lag between eye fixations and cognitive processing, causing 
them to suggest that what we see is also what we think about. We 
can infer a lot about a person’s thinking process from their gaze 
behavior. Fixation duration alone is a strong measure to distinguish 
novice users from experts [2, 34], infer student engagement in ex-
tracting and processing information from a set of given sources [32], 
distinguish reading behaviors of users for different tasks such as 
comprehension and proofreading [40], and even predict query terms 
during information processing with high accuracy [18]. Fixation 
count has also been associated with fixation duration in cognitively 
processing a word [33, 66], identifying readers with high recallabil-
ity [77], and identifying the relevance of specific areas of interest 
to readers [45]. More recent studies found the effect of more sophis-
ticated gaze measures such as increased pupil size for novice users 
compared to experts [2], and gaze velocity being able to predict 
users’ intent to interact [19]. All of these studies, however, focus 
on analyzing users’ gaze behaviors while reading single sentences 
or single documents. 

Research on users’ gaze behaviors while reading and processing 
information from multiple sources [35] is relatively underexplored. 
During everyday sensemaking tasks, in addition to comprehending 
individual pieces of text, people spend a lot of time searching for 
information from diverse sources and integrating them to answer 
questions [10]. Thus, in real-world scenarios, the ability to make 
predictions from eye gaze measures based on reading individual 
pieces of text is challenging [35], even with advanced deep neural 
networks [1]. In addition, solely analyzing eye movements does not 
provide insight into the user’s reasoning process for multiple docu-
ments as it introduces frequency bias [37]. In a dataset with multiple 
documents, a word can appear in different documents in different 
contexts, not all of which are relevant to the users. Due to its high 
frequency, the word may end up having a larger total fixation du-
ration regardless of how the user perceives that word. Tahmid et 
al. addressed this issue by proposing a gaze metric for sensemak-
ing tasks involving multiple inter-connected documents, where 
they handled the frequency bias and document length bias, and 
combined the fixation duration and fixation count to measure user-
perceived information relevance during sensemaking tasks [73]. In 
our work, we aim to leverage this inferred-relevance by generating 
intelligent recommendations for sensemaking analysts. 

2.4 User-Centered Information Retrieval 
It comes as no surprise that systems with intelligent document 
retrieval features have been studied extensively [9, 14, 24, 81, 84]. 
They showed that a user’s interactions have implicit meanings 
that help to reveal their information-seeking strategy [83]. For 
instance, users’ interactions with a list of searched documents can 
provide an understanding of how the searcher’s information needs 
change over time [81]. The searched term itself can help a system 
to determine which documents the user would be interested in [14]. 
This may introduce a term-matching problem where the searched 
term and the index terms may not match exactly. Phrasier [36] tried 
to address this problem by automatically exploiting predetermined 
keyphrases from the source documents to create links to similar 
documents. However, this approach puts the machine in the driving 
seat and takes some control away from analysts. 

Another approach is to rely more on implicit user actions such as 
reading time [42, 56], browsing patterns [69], scrolling time [17, 42], 
or mouse movement [17] to estimate the user-perceived relevance 
of terms in the documents. Our hypothesis is that the gaze measures 
in the immersive space could be used in a similar way. Fixation 
time, for instance, is quite effective in predicting the relevance of 
individual Web pages [26], and predicting relevant search terms [18, 
81] in information-retrieval tasks. The underlying assumption is 
that the time spent reading a word reflects the user’s cognitive 
processing of that word [33, 65, 66]. This principle has been proven 
effective in predicting relevance for words [51], paragraphs [7], 
and documents [28] read by users. McNamara et al. [55] used eye 
tracking to measure user attention to objects of interest and place 
labels in an information-rich environment. However, Drusch et 
al. [23] showed that the user’s area of interest changes over time and 
requires dynamic visualization techniques to accurately represent 
the user’s interest. 

In summary, eye gaze data can predict analysts’ perception of 
information relevance. However, these predictive models cannot be 
directly transferred to sensemaking tasks due to the interconnected 
nature of the dataset, and the analyst’s evolving interest during a 
given task. In our work, we aim to address this gap by exploring 
ways to integrate a gaze-based recommendation model into the 
immersive sensemaking process, and evaluating its effect on the 
analyst’s overall sensemaking process involving multiple inter-
connected documents. 

3 System Design 
In this section, we will detail the design of our system with general 
sensemaking features and proposed recommendation cues. 

3.1 Sensemaking Features 
Let us first detail the basic sensemaking features available in both 
Freestyle and EyeST, inspired by previous IST prototypes [49, 50]. 
All the available documents for the sensemaking task are given as 
a two-dimensional list in a three-dimensional space (see Figure 1b). 
Analysts could browse the documents through pagination buttons. 
On each page, analysts could see the headlines for up to ten docu-
ments. They could use the controller ray to aim at the headlines, and 
press the trigger button to open it in detail. The analyst could also 
use their controller ray to grab and move the documents around 
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in the three-dimensional space. We allowed the analysts to create 
notes and labels to externalize their thoughts. We also allowed the 
analysts to search for keyword(s) in the dataset. All three features 
utilized a physical keyboard on a rolling cart (see Figure 1a). We 
also implemented a quick search [20] feature where the analyst can 
aim their controller ray at a word and press a predefined button to 
search, reducing the step of manually typing the word. 

3.2 Gaze-Driven Interest Model 
In a sensemaking task involving multiple interconnected docu-
ments, single gaze measures such as fixation duration or fixation 
count are not enough to infer the interest of a document perceived 
by the analyst [35]. Tahmid et al. proposed a gaze-derived metric, 
GazeScore, to address this issue by combining the duration and 
dwell values on each word and document [73]. GazeScore also ad-
dressed the frequency bias by incorporating the inverse document 
frequency (IDF) [16] of each word in a dataset. In our work, we built 
on their findings to develop a recommender based on the analyst’s 
gaze data. Compared to the previous study, which only focused 
on capturing the analyst’s overall (global) interest at the end of a 
sensemaking session, this study will explore two types of interest, 
local and global interest in documents, during sensemaking ses-
sions. Equation 1 below represents the GazeScore (GS) for an entity 
x, which could be either a word or a document: 

𝐺𝑆𝑥 = 

𝐺𝐷𝑥 −𝜇𝐺𝐷 
𝜎𝐺𝐷 

+ 
𝑈 𝐷𝑥 −𝜇𝑈 𝐷 

𝜎𝑈 𝐷 

2 
∗ 𝐼 𝐷𝐹𝑥 (1) 

Here, 𝜇 and 𝜎 denote the mean and standard deviation of Gaze 
Duration (GD) and Unique Dwell (UD), respectively. GD quantifies 
the time an analyst spends on an entity, while UD measures the 
frequency of an analyst revisiting an entity. Following are the ways 
we used this equation to derive local and global document interest. 

Local interest of a word is defined as the significance of a word 
to an analyst relative to other words within the same document. 
In a sensemaking task, a single word can appear across multiple 
documents, each time in a different context. By considering local 
interest, we can gain insights into the contextual significance of a 
word to an analyst. For calculating the local interest of a word, we 
used the following parameters in Equation 1: 

𝐺𝐷𝑤 = reading duration of a word within a document 

𝑈 𝐷𝑤 = reading frequency of a word within a document 

𝐼 𝐷𝐹𝑤 = 1 

This gives us the local interest vector (LIV) for each document, D, 
with Equation 2. 

𝐿𝐼𝑉𝐷 = {𝐺𝑆𝑤1 , 𝐺𝑆𝑤2 , 𝐺𝑆𝑤3 , ⋯, 𝐺𝑆𝑤𝑀 } (2) 

where 𝑀 is the number of words in the vocabulary. EyeST com-
putes the similarity between two documents by taking the cosine 
similarity between their LIVs. 

Global interest refers to how relevant a word or a document is 
to an analyst relative to the entire dataset. Global interest allows us 
to get an understanding of the analyst’s mental model at any time 
during a sensemaking session, and hints at their path of approach 
to the solution of the task. To calculate the global interest of a word, 
we used the following parameters in Equation 1: 

𝐺𝐷𝑤 = reading duration of a word within the entire dataset 

𝑈 𝐷𝑤 = reading frequency of a word within the entire dataset 

𝐼 𝐷𝐹𝑤 = log 
𝑁 
𝑛𝑤 

Here 𝑁 is the total number of documents in the dataset, and 𝑛𝑤 is 
the number of documents that contain the word 𝑤 . This allows us 
to derive the Global Interest Vector (GIV) for the analyst following 
Equation 3. 

𝐺 𝐼𝑉 = {𝐺𝑆𝑤1 , 𝐺𝑆𝑤2 , 𝐺𝑆𝑤3 , ⋯, 𝐺𝑆𝑤𝑀 } (3) 

where 𝑀 is the number of words in the vocabulary. We can compute 
the global interest of a document by taking the cosine similarity of 
its LIV and the analyst’s GIV. 

The primary objective of this study was not to devise a new al-
gorithm for a recommendation system, but rather to assess the 
effectiveness of gaze-driven visual cues in suggesting relevant 
documents. The recommendation model for the system was thus 
kept simple. Our approach drew inspiration from the TFIDF al-
gorithm [67], which transforms each document into a vector of 
double values containing the TFIDF value. We substituted TFIDF 
with GazeScore (Eq 1), subsequently converting them into LIVs (for 
each document) and a GIV (for the analyst), both of which encom-
pass every word in the vocabulary, ensuring the same size for all 
vectors. EyeST updated these values each time the analyst looked 
away from a document after reading it for at least two seconds. 

3.3 Recommendation Visual Cues 
3.3.1 Global Recommendation Cues. EyeST presents two cues to 
represent the documents’ global interest. First, it changes the 
document background color to reflect its global interest, ranging 
from bright green for the most interesting to white for the least 
interesting to the analyst. Second, it reorders the list of unread 
documents so that the first document is always the one with the 
highest global interest to the analyst, and the following documents 
are presented in decreasing global interest order (see Figure 1b). 
Both of these cues helped in guiding the analyst’s attention to the 
more interesting documents in an otherwise cluttered environment. 

3.3.2 Local Recommendation Cues. EyeST calculates the average 
of the similarity and global interest for each document pair. It then 
sorts these averages in descending order, and provides the top four 
as local recommendations to each document of the pair. This 
helps analysts expand their understanding of a document by linking 
it with others that are also of high interest overall. By factoring in 
global interest, we ensure that analysts stay focused and are not 
misled by information from any single document. 

To avoid overwhelming the analyst with excessive information, 
we provide the recommendations with an overview first, leaving the 
analyst to decide if they want the details. The overview is shown as a 
list of tabs, each providing some context about the recommendation 
(see Figure 1c). The tab color signifies the recommended document’s 
global interest; it also contains up to three words with the most 
interest within the context of these two documents. Finally, the tab 
has a yellow border if the recommendation has already been read 
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(a) A temporary red arrow guiding attention to a recommen-
dation that has already been read and placed by the analyst. 

(b) A new recommendation is brought closer for detailed read-
ing and a thin green thread is created after clicking the tab. 

(c) The analyst can review the shared words by hovering over 
a link. They can also sever a connection by clicking on the 
thread. 

Figure 2: Interactions with the local recommendation tabs 

by the analyst. The analyst can hover their controller ray over the 
tab to see the document’s spatial position with a temporary red 
arrow (see Figure 2a). They can click the tab to make it disappear 
and create a more permanent thread attached to the recommended 
document (see Figure 1a). A tab without the border represents a 
new document for the analyst to read. The analyst can click the 
tab to bring the recommended document into view, and read it 
in detail. This will also result in a thin thread connecting the two 
documents (see Figure 2b), and the shared words being highlighted 
in the recommended document. Once a thread is created, the analyst 
can review the shared words by hovering over the thread. They can 
also click it to sever the connection (see Figure 2c). 

4 Experiment Design 
We present the details of the experiment we ran to evaluate EyeST’s 
effectiveness in enhancing immersive sensemaking. 

4.1 Research Questions and Hypotheses 
4.1.1 RQ1: How do the gaze-driven recommendation cues affect the 
analyst’s task performance? We propose using the analyst’s implicit 
gaze data to infer their perceived interest in documents, and lever-
aging it to generate intelligent recommendation cues. The goal of 
these cues is to help analysts navigate the complex interconnected 
documents in a sensemaking task in a more efficient and effective 
way. We hypothesize that, in the EyeST condition, 

H1a: Analysts will be more efficient, by spending more of their 
time analyzing essential information. 

H1b: Analysts will not be derailed by spending more time on 
reading distractor information in the dataset. 

H1c: Analysts will read more of the essential documents. 
H1d: Overall sensemaking score will not be significantly better, 

since the personalized recommendations are only as good 
as the analysts they are personalized for. 

4.1.2 RQ2: How do the gaze-driven recommendation cues affect the 
analyst’s foraging strategies? The recommendation cues aim to en-
hance the analyst’s foraging capability by having them retrieve 
more essential information with less effort and time. We hypothe-
size that, in the EyeST condition, 

H2a: With the help of recommendation cues, analysts will read 
more documents in total. 

H2b: Since analysts will be exposed to more essential information 
worth reading, they will spend more time reading essential 
documents. 

4.1.3 RQ3: How do the gaze-driven recommendation cues affect the 
analyst’s physical and mental effort? In a cognition-heavy sense-
making task, the analyst is already overwhelmed with a lot of 
unstructured information that requires a considerable amount of 
mental effort. We want to see if the recommendation cues can help 
alleviate some of that effort by partially reflecting their mental 
model onto the spatial layout. We hypothesize that, in the EyeST 
condition, 

H3a: Analysts will report less mental effort. 
H3b: Analysts will report less physical effort. 
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4.1.4 RQ4: How do the gaze-driven recommendation cues affect the 
analyst’s overall experience? With the recommendation cues, we are 
offering the analyst an AI assistant that constantly learns from the 
analyst and updates itself. We want to investigate how the analysts 
respond to such support in a cognition-heavy task. Here, the focus 
is not just on how well they perform the task, but rather, how 
they feel about their own performance, their strategies, and their 
experience of collaborating with an AI assistant. We will analyze 
these findings and discuss how they relate to the implementation of 
our recommendation cues. Based on these findings, we will present 
design guidelines for future researchers working with implicit gaze-
based recommendation cues in IA tools. This question focuses on 
an exploratory analysis of the analyst’s experience with the EyeST, 
and requires no hypothesis. 

4.2 Conditions 
This study aimed to explore how a gaze-enhanced IA tool, such as 
EyeST, affects the analyst’s sensemaking ability, their information 
foraging strategies, and their overall experience. This results in two 
distinct conditions, which we varied between subjects: 

In the EyeST condition, the IA tool kept learning about the par-
ticipant’s interest from their gaze data, and helped them with addi-
tional recommendation cues. However, we did not share how the 
recommendation cues were generated until the end of the session to 
prevent participants from intentionally influencing the recommen-
dations. This also allowed us to keep consistency between the two 
conditions. In the Freestyle condition, the participant received no 
additional cues from the system. They could explore the dataset ei-
ther by exhaustively reviewing each document or by using keyword 
searches to find essential information. 

4.3 Dataset and Task 
To evaluate the efficacy of the recommendation cues, we utilized 
analysis exercises developed by Frank Hughes of the Joint Military 
Intelligence College [31]. These exercises include a collection of 111 
fabricated intelligence reports embedded within a master plot. Out 
of these, 65 documents are directly related to the master plot (we 
refer to these as ‘essential’ documents), while the rest serve as noise 
or deceptions (‘distractors’). Our intention was to use a sufficiently 
large dataset to ensure that participants could not simply read all 
the information exhaustively to find the answers to the guiding 
questions. Instead, they would need to work efficiently to identify 
the most important information within the time provided. 

Participants were tasked with exploring these documents to 
investigate the scenario. The documents consisted of reports from 
intelligence agencies, all presented in text format and identified by 
randomized numbers. To provide more context to the participants, 
we generated a headline for each document using the following 
prompt in ChatGPT-3.5 2: “Generate a headline for the following text 
in no more than 50 characters." Since participants would only interact 
with the dataset for a limited time, we gave them four documents to 
start with, all of which contained key insights about the plot. These 
starter documents also allowed EyeST to collect the participant’s 
gaze data, and start developing an understanding of their interests. 

2https://platform.openai.com/docs/models/gpt-3-5-turbo 

We also created a prompt containing specific questions about the 
master plot to give them a concrete set of objectives: 

(1) When is the attack going to happen? 
(2) Who hired the attackers? 
(3) What weapon are they going to use? 
(4) Find the leaders, suppliers, and deployers from the given list. 

The first three questions were open-ended, while the last one re-
quired participants to classify 22 names into three specified roles. 
The task is appropriate for both students and professionals, as it 
does not require any specialized analytical skills or domain knowl-
edge. We gave the participants 45 minutes to complete the task. 

4.4 Measures 
We recorded each participant’s actions in a detailed log file, stor-
ing document positions, reading duration, unique dwell counts, 
note-taking, label creation, and keyword searches, among other in-
teractions. Additionally, we logged the global interest updates and 
the local recommendations generated for all documents throughout 
the session. Recommendation cues were not displayed to partici-
pants in the Freestyle condition. Furthermore, we collected gaze 
origin and direction at a frequency of 60Hz. 

After the study, participants completed a demographic ques-
tionnaire followed by the NASA TLX [29]. They then filled out a 
modified short-form User Engagement Scale [59] to provide feed-
back on their focused attention, perceived usability, and reward 
factor. To understand participants’ perception of the AI, we col-
lected responses on the system’s trustworthiness (adapted from 
TIA [43]) and the system’s performance (adapted from TOAST [82]). 
We also included custom questionnaires to gather their opinions 
on finding relevant information and their sensemaking quality. 

4.5 Procedure 
The procedure of the study was as follows. Participants began by 
signing a consent form approved by the IRB. Next, the experimenter 
introduced them to the ‘case file’, explaining the task and outlining 
the features of the IA tool they were assigned to use. Afterward, the 
experimenter measured the participant’s Inter-Pupillary Distance 
(IPD), and adjusted the headset accordingly. Then the experimenter 
helped the participant put on the headset, and guided them through 
the eye-calibration steps 3 while wearing the headset. The applica-
tion was launched after completing the calibration. 

4.5.1 Readability Trials. Meta’s eye calibration steps test gaze pre-
cision on a virtual sphere that is relatively larger than the text height 
used in our study. Hence, to reassess the participants’ gaze precision 
in our study, we developed a series of 10 readability trials. In each 
trial, the participant first found the answer to a question from a 
paragraph of 2-3 sentences. Next, the participant focused on a pre-
defined word and confirmed with a controller button. Throughout 
these trials, participants maintained a distance of 2′ from the text. 
The entire process took approximately 7-10 minutes to complete. 

4.5.2 Tutorial. The participants learned how to interact with the 
IA tool by completing a set of brief tasks, including creating notes, 
labeling, searching for keywords, and resetting searches. They also 

3https://youtu.be/lP0OFFuzIEU?si=F84NPKWhe5c6ZVR4&t=120 

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://youtu.be/lP0OFFuzIEU?si=F84NPKWhe5c6ZVR4&t=120
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learned to move and organize documents in a 3D spatial layout. 
This segment took approximately 5-10 minutes to complete. 

4.5.3 Main Study. In the main study, the participants completed 
the task from Section 4.3. They had access to the four starter doc-
uments and the prompt questions. Before they read the starter 
documents, the participants could not search for keywords or ac-
cess the recommendation cues. However, they could still externalize 
their thoughts with notes and labels. After reading the starter docu-
ments, they could access the other documents in the dataset and all 
the features became available (see Figure 3). The participants had 
45 minutes in this session, with up to a five-minute grace period 
on request. The experimenter provided time updates at 15, 30, 40, 
and 45 minutes. 

4.5.4 Post-Study Questionnaire. After completing the task, partic-
ipants took off the headset. They completed the post-study ques-
tionnaires and sat for an audio-recorded semi-structured interview 
to discuss their experience with the IA tool. This step took 10-15 
minutes to complete. 

4.6 Apparatus 
We used the Meta Quest Pro 4 with eye tracking enabled. The eyes 
were tracked with two in-device cameras at approximately 60 FPS. 
We applied smoothing and filtering to reduce noise and improve the 
overall accuracy of the gaze data. The participants walked freely 
around an obstacle-free space of 17 ′ 𝑥14 ′ . We enabled passthrough 
so that the participants could see the real world. They could interact 
with the IA tool with Meta Quest Touch Pro 6-DOF controllers. We 
implemented the application in Unity v2021.3.12 with Mixed Reality 
Toolkit 2. 

4.7 Participants 
We ran a between-subject study with 26 participants (12F, 1 Non-
Binary), with an average age of 23.28 (𝜎 = 3.96, 𝑚𝑎𝑥 = 31, 𝑚𝑖𝑛 = 
19). All participants had normal vision or corrected vision with 
contact lenses. All participants, except two, had used a mixed-reality 
headset at least once prior to this study. 

5 Results 
We analyzed the data from the experiment to test our hypotheses 
and understand the differences between the EyeST and Freestyle 
conditions. For all significance comparisons between the two condi-
tions, we conducted the Shapiro-Wilk test to check for the normality 
of the data. For normal data distributions, we conducted the inde-
pendent samples t-test, while running the Mann-Whitney U test 
for non-normal data. 

5.1 Quality of Gaze Data 
We started by analyzing the ‘readability trials’ (Section 4.5.1) to 
validate the gaze data collected from participants. First, we assumed 
that the participants would have more interest in the answers to 
the question. Out of 10 × 26 = 260 answer instances, the average 
interest for the answers was 81.1%, with a standard deviation of 
12.3%, consistent with the findings from Tahmid et al. [73]. 

4https://www.meta.com/quest/quest-pro/ 

(a) In the Freestyle condition, the documents were ordered 
chronologically, with earlier events on the top and the file icons 
were of uniform color. 

(b) In the EyeST condition, the documents were ordered based 
on their perceived global interest, which was also reflected in 
the icon color. 

Figure 3: List of unread documents shown to participants in 
the Freestyle and EyeST conditions. 

For the precision test, we measured whether the participant’s 
gaze landed on a predefined word. We also measured the extent of 
deviation from the center of the word. Across 30×26 = 780 instances, 
the average precision was 75.7%, with a standard deviation of 18.4%. 
The low precision can be explained by the average gaze deviation 
from the target word, 0.72◦ (𝜎 = 0.26◦), which is higher than the 
words’ height (0.5◦). However, the deviation still aligns with the 
1.08◦ margin of error reported for Meta Quest Pro headsets [5]. 

The results from the readability trials emphasize that our gaze 
data were comparable with prior studies, allowing us to move for-
ward with the data, and leveraging it for generating recommenda-
tion cues. 

https://www.meta.com/quest/quest-pro/
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(a) Freestyle participants read more distractor documents than EyeST 
participants. 
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(b) EyeST participants read a higher percentage of essential documents 
than Freestyle participants. 

Figure 4: Comparing the ground truth of documents read by participants in Freestyle and EyeST conditions. 

5.2 Filtering Information 
We evaluated how the participants from the two conditions filtered 
‘essential’ information while avoiding ‘distractors’. 

5.2.1 Number of Essential Documents (rejects H1c, H2a). We com-
pared the differences in the number of essential documents read 
by participants for the two conditions. We found no significant 
difference (𝑡 (24) = −1.5, 𝑝 = 0.15) between the Freestyle (𝜇 = 20.69, 
𝜎 = 8.33) and EyeST conditions (𝜇 = 26.08, 𝜎 = 9.89). 

5.2.2 Number of Distractor Documents (supports H1b). We found 
that that participants in the Freestyle condition (𝑚𝑒𝑑𝑖𝑎𝑛 = 7.0, 
𝐼 𝑄𝑅 = 4.0) read significantly more (𝑈 = 145.5, 𝑝 < 0.01, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 
0.36) distractor documents than the participants in the EyeST con-
dition (𝑚𝑒𝑑𝑖𝑎𝑛 = 1.0, 𝐼 𝑄𝑅 = 3.0) (see Figure 4a). 

5.2.3 Ratio of Essential Documents (supports H1a). Out of all docu-
ments read, the percentage of essential documents read by Freestyle 
participants (𝜇 = 0.78, 𝜎 = 0.12) was significantly less (𝑡 (24) = 
−4.87, 𝑝 < 0.001, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = −1.91) than same ratio for the EyeST 
participants (𝜇 = 0.95, 𝜎 = 0.05) (see Figure 4b). 

5.2.4 Reading Duration of Essential Documents (supports H2b). 
We measured the time spent on reading essential documents by 
all participants. We found that Freestyle participants (𝜇=1446.73, 
𝜎 =333.48) spent significantly less time reading essential documents 
(𝑡 (24) = −3.10, 𝑝 < 0.01, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = −1.2) compared to EyeST partici-
pants (𝜇=1810.12, 𝜎 =259.17) (refer to Figure 5a). 

5.2.5 Reading Duration of Distractor Documents (supports H2b). 
We measured the reading duration of distractor documents by par-
ticipants, revealing that participants in the Freestyle condition 
(𝑚𝑒𝑑𝑖𝑎𝑛 = 222.01, 𝐼 𝑄𝑅 = 176.22) spent significantly more time 
reading distractor documents (𝑈 = 147.0, 𝑝 < 0.01, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 0.37) 
compared to participants in the EyeST condition (𝑚𝑒𝑑𝑖𝑎𝑛 = 23.18, 
𝐼 𝑄𝑅 = 82.57). 

5.2.6 Time Distribution of Users (supports H1a). We compiled the 
duration of various activities during sensemaking and normalized 
them by the total time of the session. Figure 5b illustrates that 
EyeST participants spent roughly the same amount of time on 
essential documents as Freestyle participants did on both essential 
and distractor documents combined. Overall, EyeST participants 
spent slightly more time in the immersive space. We note that, 
while small, there were some overlaps between these actions. For 
instance, participants read documents while they were in the middle 
of writing notes. Also, we did not consider trivial actions such 
as moving documents, walking around, etc., hence the total time 
shown in the figure is less than 1.0. 

5.2.7 Task Performance. To complete the task, participants had to 
answer a set of questions targeted towards the solution. We graded 
each of their responses according to a rubric, and gave one point for 
each correct answer. The highest possible points one could receive 
was 44. The results (𝑈 = 83.0, 𝑝 = 0.95) revealed that there was no 
difference between Freestyle (𝑚𝑒𝑑𝑖𝑎𝑛 = 9.0, 𝐼 𝑄𝑅 = 9.0) and EyeST 
(𝑚𝑒𝑑𝑖𝑎𝑛 = 10.0, 𝐼 𝑄𝑅 = 5.0) performance, thus supporting H1d. 

The results from this section allowed us to test the hypotheses for 
RQ1 and RQ2. We found that, while participants did not read more 
documents or perform better with EyeST, they used their time more 
efficiently by prioritizing essential documents over distractions. 
In the following sections, we will examine the role of local and 
global recommendation cues in supporting this efficiency and their 
influence on participants’ interactions with the tool. 

5.3 Evaluating Recommendation Cues 
In order to explore the impact of local recommendation cues on 
locating essential documents, we counted how many of them were 
essential. We observed a precision of 90% with 43% recall, implying 
that EyeST was very selective about the recommendations (see 
Figure 6b). The confusion matrix cells represent the average per-
centage of documents across all EyeST participants. We observe that 
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(a) EyeST participants spend more time reading essential docu-
ments. 
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(b) Average time distribution of participants’ activities across two 
conditions. 

Figure 5: Comparison of time spent reading essential and 
distractor documents by participants in Freestyle and EyeST 
conditions. 

EyeST only recommended documents if it was confident, allowing 
it to successfully prune the distractor ones. In contrast, Freestyle 
participants’ strategy mostly involved searching keywords to find 
essential documents (see Figure 10a). Figure 6a demonstrates that 
their search results yielded higher recall (64%) at the cost of lower 
precision (67%) than the EyeST participants. 

We also analyzed how many of the documents were essential 
when they were sorted by global interest, and found that EyeST 
maintained ≈ 100% precision for the top 15 documents throughout 
the session (see Figure 7). Towards the end of the session, the preci-
sion declined for documents ranked lower than 15. Interestingly, the 
decline started around the same time the participants were updated 
about passing two-thirds (30 minutes) of the session. One possible 
reason is that with the time update, participants began to rush 
through the documents. As a result, distractor documents started 

appearing more often, moving up the global interest hierarchy, and 
affecting the quality of global interest. 

5.4 Dataset Exploration 
Since we found that the recommendation cues were ‘good’ at guid-
ing participants toward the ground truth, we wondered whether the 
cues were personalized for each participant. In other words, since 
everyone started with the same four essential documents, could 
we have simply recommended documents related to the starter 
documents, without considering the participant’s gaze? We inves-
tigated this question by exploring how much of the dataset was 
explored by participants. Additionally, we wanted to see whether 
the recommendation cues guided all EyeST participants towards 
the same storyline, or if their gaze data personalized the experience 
enough to explore different storylines within the dataset. 

5.4.1 Document Coverage. We analyzed all the documents read by 
participants in both conditions and counted how many participants 
read each one. Figure 8a shows the results in a heatmap where 
darker colors represent more readers and the documents in each 
group are sorted by their similarity to the starter documents. As 
expected, the starter documents are the darkest since all participants 
had to read them. 

Interestingly, a few other documents are nearly as dark, sug-
gesting they were popular with EyeST participants. These darker 
documents are mostly on the left side of the heatmap, indicating 
their content similarity with the starter documents. At first glance, 
it might seem like these documents were recommended only be-
cause of their similarity to the starter documents, regardless of 
their gaze-inferred interest. On closer inspection, we found that 
these darker documents (read by 10 or more EyeST participants) all 
focused on one suspect, Safrygin, who was mentioned once in four 
starter documents. It is worth noting that the starter documents 
included information about ten suspects, eight potential targets, 
and three suspicious organizations in total. Yet, most EyeST par-
ticipants were interested in this one suspect, who was mentioned 
to be in contact with a ‘bioweapon’ expert. One of the prompt 
questions was directly about weapons which might explain why 
the participants showed more interest in this plot thread than the 
others. The other starter documents were about suspicious travel 
plans and a suspicious package being moved around the country. 
A few participants explored these threads of the plot, explaining 
the lighter shades near the starter group. From observation of the 
top-right corner, even though the EyeST participants read some 
distractors, they did not spend much time on those (see Figure 8b), 
reaffirming their tendency to avoid distractors. 

In contrast, Freestyle participants, lacking recommendation cues, 
explored freely, and the colors are hardly distinguished between 
essential and distractor documents. There is one dark shade in 
the Freestyle row (around the middle), which was also the first 
document on the default unread document list. Hence, almost all 
Freestyle participants ended up opening and reading that document. 
In summary, while Freestyle participants explored documents with 
more diversity, EyeST participants were steered toward documents 
with high similarity to the one suspect from the starters, leading 
to a more focused exploration. We will discuss the implications of 
this in Section 6. 
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(a) Search results performance in the Freestyle condition. 
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Figure 6: Comparing the performance of EyeST local recommendations with the Freestyle search results at finding essential 
documents while avoiding distractors. 
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Figure 7: EyeST maintained a high precision for the top 15 
documents (based on global interest) throughout the session. 
As participants started rushing through information in the 
latter part of the session, documents with lower global inter-
est tended to start including distractors, lowering precision, 
but still staying mostly over 90%. Interestingly, the decline 
aligns with the time the experimenter gave the time update 
at 30 minutes. 

5.4.2 Effect of Gaze on Documents. To further investigate the per-
sonalization of gaze-derived interest, we studied how different 
EyeST participants perceived different documents, and how their 
gaze played a role before and after reading each document. Except 
for the starter documents, all EyeST participants read one other 

document, CIA_34, during their sensemaking session. We com-
pared this document’s global interest with a starter to see how the 
patterns differed. As Figure 9 illustrates, the starter document’s 
interest gradually increased in small steps throughout the session 
for all participants, showcasing the participants’ dependence on the 
starter documents’ content. This argument aligns with the observa-
tion that EyeST participants read more essential documents that are 
similar to the starter documents. In contrast, for the non-starter, the 
global interest rose up and down at different stages of the session, 
hinting at the participants’ evolving mental model. 

5.5 Source of New Documents 
To explore the dataset, the participants could browse the files in the 
list of unread documents (see Figure 3), and open documents to read. 
They could also search for keywords and find documents that way. 
The EyeST participants also had the option to read new documents 
by following the local recommendation tabs (see Figure 1c). 

5.5.1 Freestyle. We conducted a Wilcoxon signed-rank test to com-
pare the number of documents selected from the list (𝑚𝑒𝑑𝑖𝑎𝑛 = 8, 
𝐼 𝑄𝑅 = 3) and through a search (𝑚𝑒𝑑𝑖𝑎𝑛 = 20, 𝐼 𝑄𝑅 = 18) in the 
Freestyle condition. The test revealed that participants relied on 
the search significantly more ((𝑊 = 12.5, 𝑝 < 0.05, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 3.47)) 
than the list to get new documents (see Figure 10a) 

5.5.2 EyeST. We conducted a Friedman test to assess differences 
across the three sources of new documents (List, Search, and Rec-
ommendations) in the EyeST condition. The results showed a sig-
nificant difference between sources (𝜒 2(2) = 9.69, 𝑝 < 0.01). Post-
hoc Wilcoxon signed-rank tests with a Bonferroni correction re-
vealed significant differences between List (𝑚𝑒𝑑𝑖𝑎𝑛 = 14, 𝐼 𝑄𝑅 = 14) 
and Recommendations (𝑚𝑒𝑑𝑖𝑎𝑛 = 5, 𝐼 𝑄𝑅 = 5) with 𝑝 < 0.001 
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document. 
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document. 

Figure 8: There are a few darker lines on the essential documents for EyeST participants, mostly on the left side, meaning that 
they are very similar to the starter documents. In contrast, the Freestyle row contains more uniform shades. In both heatmaps, 
the top-right corner is relatively lighter, reflecting EyeST participants’ tendency to avoid distractors. 
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Figure 9: Global interest update timeline for a starter (left) and a non-starter (right) read by all participants. Participants are 
sorted by their performance. The global interest steadily increases for the starter document, implying the participants’ reliance 
on the starter documents. In contrast, the global interest for the non-starter rises up and down based on participants’ mental 
models throughout the session. 

(see Figure 10b). No significant difference was found between List 
and Search (𝑝 = 0.17), or between Search and Recommendation 
(𝑝 = 1.0). 

5.5.3 Freestyle vs. EyeST. We conducted Mann-Whitney U tests to 
compare the document sources across the two conditions. The 
results (𝑈 = 26, 𝑝 < 0.005, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = −0.35) revealed that for 
new documents, the List was used more by the EyeST partici-
pants (𝑚𝑒𝑑𝑖𝑎𝑛 = 14, 𝐼 𝑄𝑅 = 14) than the Freestyle participants 

(𝑚𝑒𝑑𝑖𝑎𝑛 = 8, 𝐼 𝑄𝑅 = 3). On the other hand, the Search was used sig-
nificantly more (𝑈 = 140, 𝑝 < 0.005, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 0.33) by the Freestyle 
participants (𝑚𝑒𝑑𝑖𝑎𝑛 = 20, 𝐼 𝑄𝑅 = 18) than the EyeST participants 
(𝑚𝑒𝑑𝑖𝑎𝑛 = 5, 𝐼 𝑄𝑅 = 14). 

To better understand how document sources influenced a sense-
making session, let us examine an example from each condition. 
Figure 11a presents a session from a Freestyle participant. The hour-
glass (⧖) at the top indicates each search performed by the user. It 
is evident that most of the documents were obtained from search 
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(a) The Freestyle participants relied more on explicit searches to ex-
pand their knowledge base with new information. 
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(b) The EyeST participants relied more on the list of unread documents 
to expand their knowledge base with new documents. 

Figure 10: Comparing sources for new documents in the two 
conditions. 

results. Figure 11a also shows the ground truth relevance of the 
documents on the color-coded y-axis labels. We observed that the 
participant ended up obtaining both essential (blue) and distractor 
(red) documents from these search results. 

In contrast, Figure 11b illustrates the sensemaking timeline of 
an EyeST participant employing a similar strategy. This participant 
also engaged in frequent search operations but did not rely solely 
on search results. Instead, they also retrieved documents from the 
list and recommendations. This suggests that the user was utilizing 
recommendation cues to get new documents, while search func-
tionality aided in reviewing and integrating their own ideas with 
system-suggested ones. Figure 11b also shows how the additional 
information helped them acquire essential documents (blue) almost 
exclusively throughout the session. 

5.6 Qualitative Questionnaires 
We did not find any significant differences for NASA TLX (rejecting 
H3a, H3b). We present the results from the questionnaires about 
user engagement and trust in the system, followed by two custom 
question sets on finding essential information and overall sense-
making. 

5.6.1 User Engagement and Trust. We converted participants’ re-
sponses into a 1-7 scale, where 1 represented “strongly disagree” and 
7 represented “strongly agree.” An independent samples t-test re-
vealed significant differences in Focused Attention (𝑡 (24) = 2.26, 𝑝 < 
0.05, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 0.89) and System Performance (𝑡 (24) = 2.25, 𝑝 < 
0.05, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 0.88), as shown in Figure 12. We derived the Focused 
Attention score from the following three statements: 

(1) I lost myself in the experience 
(2) The time I spent in sensemaking just slipped away 
(3) I was absorbed in my sensemaking task 

The results indicate that Freestyle participants (𝜇 = 5.51, 𝜎 = 1.0) 
felt more focused on their sensemaking tasks compared to EyeST 
participants (𝜇 = 4.33, 𝜎 = 1.6). We calculated the System Perfor-
mance based on the following four statements: 

(1) The tool helped me achieve my goals 
(2) The tool performed consistently 
(3) I was rarely surprised by how the tool responded 
(4) I felt comfortable relying on the information provided by the 

tool 
The results show that Freestyle participants (𝜇 = 5.52, 𝜎 = 0.75) 
rated the system’s performance higher than EyeST participants 
(𝜇 = 4.65, 𝜎 = 1.17), suggesting greater confidence in the tool’s 
outputs when they did not have any recommendation cues. 

5.6.2 Finding Essential Information and Sensemaking Score. We 
asked the participants a set of five custom questions to under-
stand their thoughts on finding relevant information, and a set 
of four custom questions to assess their sensemaking experience. 
We did not find any significant difference between the two con-
ditions for finding relevant information ((𝑡 (24) = 0.2, 𝑝 = 0.84)), 
or for sensemaking (𝑡 (24) = 1.64, 𝑝 = 0.11). However, looking at 
each statement individually, we noticed a significant difference 
for one statement, ‘The tool helped me in exploring the dataset’ 
(𝑈 = 131.5, 𝑝 < 0.05, 𝑒 𝑓 𝑓 𝑒𝑐𝑡 = 0.28). Freestyle participants felt 
the tool helped them explore the dataset more than the EyeST 
participants. 

5.7 Qualitative Analysis of the Interview 
We analyzed the interview transcriptions, coding them into key 
themes and organizing them into distinct categories. By cross-
referencing participant quotes with session logs and screen record-
ings, we gathered a comprehensive understanding of their experi-
ences. We present the key findings from this analysis in the follow-
ing subsections. 

5.7.1 Pros and Cons of the Freestyle Condition. Almost all Freestyle 
participants hailed the search feature, particularly the quick search, 
as one of the most useful tools in exploring the dataset. As the 
reason for preferring the quick search over the typed search, the 
participants mentioned the challenges of switching context between 
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(a) Example of a Freestyle participant’s (P12) timeline. Freestyle 
participants rely mostly on search results to get new documents 
and tend to read distractors (red labels on the y-axis) in addition 
to essential documents (blue labels on the y-axis). The black hour-
glasses (⧖) on the top represent each search operation. 
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(b) Example of an EyeST participant’s (P19) timeline. EyeST partici-
pants rely on the list, local recommendations, and search results 
to get new documents. However, they still stay on track by reading 
only essential documents (blue labels on the y-axis) while avoiding 
distractors (red labels on the y-axis). 

Figure 11: Timelines from two conditions showing the impact of new document sources in retrieving essential documents. 
Participants from both conditions tend to regularly go back to the starter documents to reaffirm their understanding of the 
dataset. 
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Figure 12: The Freestyle participants reported more focused 
attention and better system performance than EyeST partici-
pants. 

controller and keyboard and losing their train of thought. Freestyle 
participants also expressed feelings of being overwhelmed with the 
sheer volume of information, and getting lost after a while when 
they ran out of keywords to search. P26 said, “I had a strategy, but 
didn’t know how to execute. Because I didn’t know the documents I 
read were relevant or not.”. P20 reiterated, “⋯ lots of information. 
Didn’t know how much of that is relevant.” 

For improvements, Freestyle participants suggested the addition 
of text-highlighting capabilities within documents as a way to 
narrow down their focus. Several participants requested the option 
to close or minimize documents to reduce visual clutter, while others 
wanted capabilities to draw connections between documents. 

5.7.2 Pros and Cons of the EyeST Condition. Participants in the 
EyeST condition generally found the color-coding of document 
interest helpful, as the color gradient made it easier to identify 
which documents to prioritize while reviewing older information. 
Several participants found the thread between related documents as 
a valuable tool for synthesizing inter-connected information across 
documents. Many participants also found the quick search feature 
useful, especially when reviewing information from previously read 
documents. When search results were overwhelming, participants 
relied on the document’s background color to narrow their focus. 

However, the local recommendations were not as well-received. 
Participants found them less helpful compared to the color-coding 
or the reordered document list. P21 remarked, “The keywords were 
vague and disjointed”, while P13, who relied on both search and 
recommendations to expand their knowledge noted, “The AI kept 
recommending documents about the same person, so I stopped using 
it and searched for other suspects.” Interestingly, the AI-suggested 
person was a key figure in the ground truth solution. Contrary to 
the Freestyle, EyeST participants did not feel lost and did not run 
out of ideas during the session. However, they felt their space was 
filled pretty quickly, some participants pinning the reason on the 
recommendation tabs that “kept popping up even when I did not 
want it. (P25)” 
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When asked how the AI could improve their experience, partici-
pants expressed a desire for more control over the recommendation 
cues, including the ability to guide the recommendations by inte-
grating their own insights so they would not feel confined to the 
AI’s suggestions. They also wanted the capability to manually high-
light phrases in documents and create labeled threads to enhance 
their ability to organize and relate information. 

6 Discussion 
In this section, we will discuss the implications of our results, and 
provide a design guideline for gaze-based recommendation cues. 

6.1 Validity of the Recommendations 
There are two key ways to validate the effectiveness of the rec-
ommendation cues. First, it is essential to assess whether these 
recommendations are close to the ground truth, ensuring they can 
guide the participant toward the correct solution. We found that 
an average of 90% of the recommendations was essential to the 
ground truth. Considering the global interest, almost 100% of the 
documents in the top 15 were always essential. This, combined with 
the fact that EyeST participants preferred getting new documents 
from the list, where the top 10 documents with the highest global 
interest were always on the first page, explains why EyeST partic-
ipants spent more time on essential documents. However, EyeST 
did not aid in making implicit connections between the documents 
which is a non-trivial task even for state-of-the-art generative AI 
models [85]. As a result, EyeST participants found the task highly 
complex (as demonstrated by NASA TLX results) and faced similar 
struggles to Freestyle participants in answering questions, leading 
to comparable task performance. 

Second, it is important that the automated recommendation cues 
do not dominate the analyst’s decision-making by always suggest-
ing the same set of essential information to everyone. The analyst 
should remain in control of the sensemaking session, with rec-
ommendations tailored to their individual needs. To validate the 
individuality of EyeST participants, we investigated how a docu-
ment’s perceived interest evolved for each participant. We found 
that the global interest in the starter documents kept increasing 
throughout the session. This can be explained by the experiment 
design. In the beginning, participants were told that the starter 
documents were important to the plot. Since they began with these 
and knew they were important, the starter documents became their 
reference point for gathering evidence for sensemaking. Another 
piece of evidence for personalized gaze data was the fluctuating 
global interest in non-starter documents. Since their relevance to 
the plot was not concrete, different participants perceived the non-
starter documents differently, allowing each of them to explore 
topics of their own interest. 

6.2 Effect of Recommendation Cues on 
Sensemaking 

We established that the recommendations were personalized for 
each participant, while being closely aligned with the ground truth. 
The next question (RQ4) is how they affected participants’ foraging 
and synthesis abilities. 

In terms of foraging, EyeST participants were highly efficient, 
with 95% of the documents they read being essential, compared to 
77% for Freestyle users. Although EyeST participants spent more 
time reading essential documents, they did not read a greater num-
ber of them overall. This suggests that the recommendation cues 
encouraged a more depth-first approach rather than a breadth-first 
approach. Additionally, EyeST participants were not derailed by 
red herrings, unlike Freestyle participants who spent significantly 
more time reading distractor documents. 

When it came to synthesis, both groups struggled with informa-
tion overload and largely failed to complete the task. This led to a 
ceiling effect on the NASA TLX, showing no difference between the 
two conditions. However, since EyeST participants were not dis-
tracted by distractors, they stayed on track throughout the session. 
In contrast, Freestyle users often felt lost after exhausting their 
strategies, which mainly involved searching by keywords. Many 
were unsure of their next steps midway through the session. 

Curiously, EyeST participants reported lower levels of focused at-
tention compared to Freestyle participants. This hints at a possible 
downside to human-AI collaboration. While the AI’s recommenda-
tion cues helped guide participants to the right information, they 
paid less attention to the content itself, losing some immersion in 
the process. In other words, since the AI was handling much of the 
task, participants felt less need to put in extra effort. In addition, 
participants often found the local recommendations unclear and 
unexplainable, leading to lack of trust on the EyeST performance. 

Interestingly, this phenomenon is not new. In human-AI col-
laboration, Lee and See recommended caution when providing 
additional or potentially conflicting information, as it can lead to 
over-reliance on the AI [46], potentially causing reduced skill even 
in highly capable participants [57, 61]. In such collaborative sce-
narios, the relationship between performance and the amount of 
information typically follows an inverted U-curve [25, 30]. Hence, 
what the AI shares and how it shares, can both be crucial for estab-
lishing an effective teaming paradigm. We can address this issue 
by clearly defining the roles of the analyst and the machine within 
an intelligent visual analytics tool, coupled with appropriate feed-
back and a balanced amount of information [80]. In the following 
sections, we take a closer look at how the participants interacted 
with the recommendation cues and discuss ways to improve them 
for more effective human-AI collaboration. 

6.3 Evaluating the Recommendation Cues 
Overall, participants reported the global recommendation cues to be 
more helpful, especially the color coding. The color gradient on the 
documents clearly highlighted their perceived interest and helped 
participants narrow their focus, especially when they were over-
whelmed with too much information. They relied on color-coding 
even when browsing through search results, whether revisiting 
older documents they had already read or exploring new ones. The 
other global cue was the reordering of the unread document list 
by their perceived interest. The participants relied on this sorted 
list most while looking for new information. These two cues, both 
representing global interest, effectively supported participants in fil-
tering essential information from a complex web of interconnected 
documents. Both of these global cues involved a higher level of 
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automation, where the AI already made a decision from the partici-
pant’s implicit gaze data, and was offering suggestions without any 
extra explicit input from the human. Hence, the human does not 
grapple with the dilemma of whether or not to trust the AI. 

On the contrary, participants had trouble interacting with the 
local recommendation cues, and had mixed feelings about their 
usefulness. To reduce visual clutter, local recommendations were 
presented with overview tabs that displayed global interest (using 
color), local interest (the three most relevant words), and read status 
(indicated by an external border for read documents). Participants 
could decide whether to explore the recommendation further based 
on this overview. The tab would then disappear, connecting the 
recommendation with a thin thread. While participants appreciated 
using the thread to identify connections between documents, they 
struggled with interpreting the color and the common words in 
the overview. The color was not very helpful since it did not vary 
much between the four recommendations. It was also difficult to 
comprehend the content of the local recommendations from just 
three disjointed words. 

In short, with lower levels of automation, local recommenda-
tions required participants to make decisions based on unclear and 
unexplainable information, often while they were already over-
whelmed by the documents themselves. On the other hand, lacking 
recommendation cues, Freestyle participants used the search fea-
ture almost exclusively, which relied on a simple term-matching 
algorithm. So their foraging steps were straightforward, trustwor-
thy, and predictable. This resulted in an interesting response from 
the participants. EyeST participants felt they did not explore the 
dataset very well. This highlights the need to improve the visual 
cues for local recommendations. 

6.4 Design Guidelines: Improving 
Recommendation Cues for Eye-Enhanced 
Immersive Analytics 

We developed the recommendation cues for EyeST based on de-
sign guidelines for human-centered AI interactions [3, 15, 76]. For 
instance, the emphasis on displaying contextually relevant informa-
tion guided us in designing the local recommendation cues. How-
ever, participants found it challenging to interpret these cues, sug-
gesting that existing guidelines need refinement for domain-specific 
tasks such as intelligence analysis and sensemaking. Drawing from 
our study’s results and user feedback, we propose new guidelines 
to help future researchers optimize gaze-based recommendation 
cues to enhance immersive sensemaking tools. 

6.4.1 Adding Syntactic Context. The EyeST participants did not 
find the local recommendations useful even though they were 
guided towards the ground truth solution. To enhance participants’ 
understanding of these recommendations and build trust in the AI, 
we propose adding more contextual information. 

Instead of providing N disjointed words, we suggest offering 
a fully formed, syntactically correct sentence that conveys addi-
tional details about the recommended document. This can be ac-
complished by using a curated prompt for a large language model 
(LLM), such as: “Generate a summary of document A in less than 

50 characters, including the words: wordA, wordB, wordC.” This ap-
proach will provide more comprehensive information about the 
recommended document while emphasizing the participant’s per-
sonalized interests. 

6.4.2 Diversified Recommendations. One observation about the 
recommendations was them being closely related to the starter doc-
uments, causing EyeST to often keep recommending the documents 
that were already read by participants. This limited the participants’ 
possibility of expanding their knowledge base, although they still 
appreciated the ability to create connections among previously read 
documents. 

To encourage the use of local recommendations for foraging 
new documents in addition to connecting old ones, we suggest 
separating the recommendations into two categories: old (for syn-
thesis) and new (for foraging). Also, instead of being always-on, we 
suggest allowing the participant to decide when they want a new 
document, and when they want to synthesize relationships with 
older documents. This could be achieved by a button attached to 
the document. This approach will ensure that for each document, 
participants will always have the option to move their sensemak-
ing process forward with a mix of foraging new information and 
synthesizing older information. 

6.4.3 User Adaptability. In this study, we only focused on the par-
ticipants’ implicit gaze data to generate personalized recommenda-
tions. However, there were instances where participants did not find 
certain recommendations useful, and wished to explore the dataset 
from a different perspective. To address this, we propose adding an 
additional layer of human feedback to the recommendation system, 
allowing participants to approve or decline specific recommenda-
tions. This explicit feedback would then update the parameters of 
the recommendation model, similar to the Star-SPIRE system [9]. 
By implementing this approach, the recommendation model would 
learn from both implicit and explicit participant feedback, thereby 
refining the recommendations over time. 

6.4.4 Increasing Transparency. To maintain consistency between 
the two conditions and prevent participants from explicitly ma-
nipulating the recommendations, we chose not to disclose how 
the recommendation cues were generated until the end of the ses-
sion. This approach may have led to confusion and distrust toward 
EyeST. 

In applications built for real-world scenarios where such restric-
tions are unnecessary, we suggest providing detailed information 
about the recommendations and their functionality. This trans-
parency will help build trust in the system and foster a more effec-
tive collaboration between humans and AI. However, that would 
allow the humans to intentionally manipulate the recommendations 
which might interfere with the recommendation model parameters. 
Hence, the researchers should proceed with a balanced approach, 
ensuring that the intelligent models can address such scenarios. 

6.4.5 Better Eye-Tracking Technology. Our gaze-driven recommen-
dation system leverages the headset’s ability to capture participants’ 
gaze with word-level precision. The height of a word viewed from 
a comfortable distance ranges from 0.45 to 0.55◦ , while the mar-
gin of error for the state-of-the-art headset’s eye tracking is 0.84◦ . 
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Therefore, we recommend that researchers implement noise re-
duction techniques, such as smoothing and filtering, to minimize 
fluctuations and achieve more stable and accurate gaze data. 

7 Limitations and Future Work 
We recognize that the local recommendation visualization cues 
require significant improvements to enhance their effectiveness. 
Future efforts will focus on refining these cues based on the pro-
posed design guidelines. One limitation of the current system is 
that the gaze data used for generating recommendations was not 
entirely accurate, which may have affected the quality of the recom-
mendations. To address this, we plan to integrate more advanced 
eye-tracking technology in future iterations. We also acknowledge 
the low number of participants in this study, and plan to address it 
in future studies. 

Additionally, our concept of rich semantic interaction extends 
beyond just eye-tracking data. By leveraging rich sensor data, future 
iterations of intelligent IA tools can offer more nuanced interactions, 
better aligning with the user’s cognitive and physical behaviors. We 
believe it would be valuable to explore how our design guidelines 
can evolve to incorporate these additional data streams, enabling 
future IA tools to interpret analyst intent more holistically. 

8 Conclusion 
In this paper, we examined the development and evaluation of 
gaze-driven recommendation cues aimed at enhancing sensemak-
ing tasks within immersive analytic tools. Our findings indicate 
that the recommendation cues effectively assist analysts in nav-
igating complex document sets by facilitating access to relevant 
information while minimizing exposure to irrelevant content. How-
ever, participants reported lower performance and expressed re-
duced attentiveness due to the lack of clarity for some of the recom-
mendation cues. Feedback from participants enabled us to identify 
essential requirements for addressing these challenges. We syn-
thesized these insights into a set of design guidelines for future 
researchers. The proposed guidelines emphasize the importance of 
adding contextual information, incorporating user feedback mech-
anisms, and improving transparency regarding recommendation 
cues. Ultimately, these guidelines aim to foster a more effective 
human-AI collaboration in immersive analytic environments. 
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