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Abstract

Genome wide association studies (GWAS) attempt to map genotypes to phenotypes in

organisms. This is typically performed by genotyping individuals using microarray or by

aligning whole genome sequencing reads to a reference genome. Both approaches require

knowledge of a reference genome which hinders their application to organisms with no or

incomplete reference genomes. This caveat can be removed by using alignment-free asso-

ciation mapping methods based on k-mers from sequencing reads. Here we present an

improved implementation of an alignment free association mapping method. The new imple-

mentation is faster and includes additional features to make it more flexible than the original

implementation. We have tested our implementation on an E. Coli ampicillin resistance

dataset and observe improvement in execution time over the original implementation while

maintaining accuracy in results. We also demonstrate that the method can be applied to find

sex specific sequences.

Introduction

Association mapping is the process of associating phenotypes with genotypes. In genome wide

association studies (GWAS), individuals are typically genotyped using microarrays or by align-

ing sequencing reads from individuals to a reference genome. However, both these approaches

require a reference genome of the organism which makes them inappropriate for association

mapping in non-model organisms with incomplete reference genomes or none at all.

To address this issue, alignment free approaches for association mapping have been

explored. A number of methods have been developed to perform association studies in bacte-

rial genomes that do not require aligning reads to reference genomes [1–4]. The high plasticity

in bacterial genomes means structural variants and even large genomic segments in various

strains are missing in the reference genomes which makes application of reference based meth-

ods difficult. However, these methods do not scale to organisms with large genomes, and as

many of them have incomplete reference genomes, there were challenges in association map-

ping in these organisms. To overcome this, Rahman et al. [5] and Voichek et al. [6] presented
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methods for mapping associations in large genomes, to categorical phenotypes and to both cat-

egorical and quantitative phenotypes, respectively. The methods are primarily based on find-

ing k-mers i.e. contiguous sequences of length k in sequenced reads and identifying k-mers

associated with the phenotype.

In the association mapping tool named HAWK developed by Rahman et al. [5], frequencies

of k-mers are analyzed to find k-mers associated with a phenotype and then they are assembled

to form the associated sequences. First, they count k-mers in reads from each individual using

Jellyfish [7]. Second, using likelihood ratio test, they find k-mers with significantly different

counts in case and control samples. Next, population structure is determined from k-mer

counts using Eigenstrat [8, 9]. After that, associations to k-mers after correcting for population

structure are determined. Finally, the k-mers found associated may be assembled to get a

sequence for each associated loci.

Here we re-implement HAWK with the goal to reduce its execution time and make it more

convenient for users. We have re-implemented the step for finding associated k-mers after

population structure correction using C++, which was previously implemented in R. We have

also extended support for Jellyfish 2 and implemented Benjamini–Hochberg procedure [10],

which can be used to correct for multiple tests when the study is underpowered for Bonferroni

correction. We have tested our implementation with a dataset on E.coli ampicillin resistance

and have compared its output with the output of the original implementation. We have also

analyzed the execution times of the two implementations. Our implementation is faster and

more flexible to run compared to the original implementation while producing results similar

to the original one.

Finally, we show that our method can be used to find sequences in the sex chromosomes.

We apply our method to sequencing data from two populations in the 1000 genomes dataset

[11], labeling males and females as cases and controls. We find that the k-mers determined by

HAWK cover the entire sequenced regions in X and Y chromosomes. It is worth noting that

other reference free methods for association mapping mentioned above are based on presence

and absence of k-mers, and hence are not suitable for finding sequences in sex chromosomes

present in both sexes e.g. the human chromosome X.

Implementation

Here we summarize the improvements and new features we have added. Fig 1 shows the work-

flow for HAWK highlighting the additions and modifications. Results supporting the improve-

ments is presented in the following section.

Re-implementation of correction for population structure

Population stratification is a known confounder in association studies. Without correcting for

this confounding factor, one may falsely associate non-significant genotypes with phenotypes.

In the HAWK pipeline, population structure was estimated using Eigenstrat [8, 9]. Eigenstrat

performs a principal component analysis (PCA) on the presence or absence status in each sam-

ple of a randomly selected set of k-mers. Then the population structure is represented by the

projections of the data points along the principal components. By default, first two principal

components are used to denote population stratification but users have the option to choose

up to first ten of them. Subsequently, p-values were adjusted for population structure and

other confounders i.e. the associations between the k-mers and the phenotype were adjusted

for confounders and p-values were re-estimated using the glm function (for fitting logistic

regression models) and the ANOVA function (for testing the goodness of fit) in R.
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Here, we re-implement this process in C++ and thereby, improve the performance of the

pipeline. R uses the IRLS (Iteratively Re-weighted Least Square) method to fit the model [12].

Therefore in our implementation of the glm function in C++, we also used IRLS for fitting the

model. Iteratively re-weighted least squares for finding the MLE (Maximum Likelihood Esti-

mate) for logistic regression is a special case of Newton’s algorithm. If the problem is written

in vector matrix form, with parameters wT = [β0, β1, β2, . . .], explanatory variables x(i) = [1,

x1(i), x2(i), . . .]T and expected value of Bernoulli distribution mðiÞ ¼
1

1þ e� wTxðiÞ
, the parame-

ters w can be found using the following iterative algorithm:

wkþ1 ¼ wk � aðX
TBkXÞ

� 1XTðmk � yÞ

where α is the learning rate, B = diag(μ(i)(1 − μ(i))) is a diagonal weighted matrix, μ = [μ(1),

μ(2), . . .] is the vector of expected values,

X ¼

1 x1ð1Þ x2ð1Þ . . .

1 x1ð2Þ x2ð2Þ . . .

..

. ..
. ..

.

2

6
6
4

3

7
7
5

is the dataset in matrix form, and y(i) = [y(1), y(2), . . .]T is the vector of response variables.

It can be observed that the B matrix is of dimensionality N × N, where N is the number of

instances. For large volume of data, this matrix can greatly affect the performance of the imple-

mentation. However, we need to only keep the values along the diagonal as this is a diagonal

matrix; thereby precluding the potential performance drawbacks. The pseudo-code of both

glm and our implementation are given in Algorithm 1 and 2 respectively. For each k-mer, we

perform a hypothesis test to compute a p-value. The null hypothesis, i.e. the k-mer is not asso-

ciated with the phenotype, is represented by fitting a logistic regression model against popula-

tion structure and other confounders whereas for the alternate hypothesis we fit a logistic

regression model against the confounders as well as the k-mer counts. Then a p-value is com-

puted using a likelihood ratio test to check whether the null can be rejected.

In our implementation, there are two hyper parameters that need to be tuned before run-

ning the process. One is the learning rate of the logistic regression model and the other is the

number of maximum iterations allowed for convergence. We used maximum iteration as 25

Fig 1. The workflow for the reference free association mapping method HAWK with the new features highlighted. The re-implemented and newly added features are

shown within solid blue boxes. Dashed red boxes and dashed blue boxes indicate old implementations that have been deprecated and are still recommended respectively.

https://doi.org/10.1371/journal.pone.0245058.g001
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because we found that the glm implementation of R has 25 maximum iteration by default [13].

We used the learning rate value of 0.1.

Algorithm 1: glm
Inputs: X, y, α, MaxIter
Result: Weight vector w
Initialize w0
k ≔ 0
while k < MaxIter do
Compute μk using wk;
Compute Bk = diag(μ(i)(1 − μ(i))) using μk;
Compute Error using y;
if Error < � then
break;

wk+1 ≔ wk − α(XT Bk X)−1 XT(μk − y);
k ≔ k + 1;

return w
Algorithm 2: HAWK

Inputs:
A (Phenotype of each individual)
B (Count of each k-mers in each individuals)
Z (Principal Components)
total (Total number of k-mers)
α ≔ 0.1
MaxIter ≔ 25
Compute y (yi 2 {0, 1}) using A
Xnull ≔ {Z, total}
Modelnull ≔ glm(Xnull, y, α, MaxIter)
foreach k-mer ki 2 B do
Compute the proportion of ki, counti, in each individual using B
Xalt ≔ {Z, counti, total}
Modelalt ≔ glm(Xalt, y, α, MaxIter)
Compute Likelihoodnull of A using Modelnull
Compute Likelihoodalt of A using Modelalt
L≔ Likelihoodalt

Likelihoodnull

p ≔ chisq(2lnΛ, 1)

The implementation also makes it easier for users to specify the number of principal com-

ponents to be used for population structure correction as well as additional covariates using

command line parameters and input files.

Bug fixes

An error was found in the old implementation regarding the order of samples during adjust-

ment of p-values using the confounding factors. This has been corrected in the new C++

implementation.

Implementation of Benjamini–Hochberg procedure

A number of approaches exist for adjusting p-value thresholds when multiple tests are being

performed. Two such methods are: Bonferroni correction and Benjamini-Hochberg correc-

tion. The previous implementation performed hypothesis testing on each k-mer and per-

formed Bonferroni correction using the total number of k-mers to determine k-mers

associated with the phenotype in question. However, Bonferroni correction is known to be

conservative i.e. it may fail to reject the null hypothesis even when it should be rejected [10].
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Here, we implemented Benjamini-Hochberg correction which controls the false discovery

rate (FDR). This can be used in studies underpowered for Bonferroni correction. The new

implementations gives the provision for performing either correction according to the user

preference.

Support for Jellyfish 2

The original implementation of HAWK used a modified version of Jellyfish [7]. Subsequently,

Jellyfish2 has been released which provides better performance. The present implementation

of HAWK allows k-mer counting using a modified version of Jellyfish2 available through our

Github repository.

Re-implementation of post-processing

Once sequences corresponding to each loci associated with the phenotype are obtained, infor-

mation such as average p-values of constituent k-mers as well as the average number of times

they are present in case and control samples could be looked up using scripts provided with

the original implementation. However, these scripts used a combination of C++ codes and

shell commands, and was found to be slow in some cases [4]. Here, we re-implemented the

script using hash tables in C++ to speed up the look-up.

Results

To assess the performance and accuracy of our implementation, we use the E.coli dataset on

ampicillin resistance which was analyzed using the original implementation of HAWK [5].

Experimental setup

All the experiments are performed on a machine with CPU Intel(R) Xeon(R) CPU E5-2697 v2

@ 2.70GHz, 386GB memory with OS Ubuntu 18.04.3. There are two CPUs in the system with

total 48 logical cores. The C++ implementation are compiled with g++-7.4.0 with no optimiza-

tion flag. Execution time is measured using the “date” command.

Hyper parameters

The code has 3 hyper parameters which are described below along with the values used in

Table 1.

Comparison of p-values

We have compared the output of our implementation and the output of the previous imple-

mentation by plotting logarithm of p-values obtained using the C++ implementation against

that of p-values obtained using the R implementation in Fig 2. An identical result should give a

line with slope 1. Graph produced by our implementation are almost linear with small devia-

tions at a few points.

Table 1. Hyper parameter values used in the implementation.

Hyper Parameter Name Description Value

learning_rate Learning rate of the logistic model fitted in the code 0.1

max_iter Maximum number of iterations the logistic model uses 25

CHUNK_SIZE Number of samples the model reads at a time while fitting the model 10000

https://doi.org/10.1371/journal.pone.0245058.t001
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The k-mers found significant after Bonferroni correction with threshold 0.05/176, 284,

643 = 2.84 × 10−10 using the old implementation (corrected version) were mapped to

Escherichia coli strain DTU-1 genome [GenBank: CP026612.1] and Escherichia coli strain

KBN10P04869 plasmid pKBN10P04869A sequence [GenBank: CP026474.1]. The positions in

the reference genomes and the p-values are shown in Manhattan plots in Fig 3(a) and 3(b).

We find associations near the β-lactamase TEM-1 (blaTEM-1) gene, the presence of which is

known to confer ampicillin resistance, as in [5]. However, some of the associations outside of

this gene detected previously in [5], that are likely to be spurious, is no longer observed after

the correction of error.

The above analysis was also performed with the k-mers found significant using the new

C++ implementation and the Manhattan plots are shown in Fig 3(c) and 3(d). We observe that

associations are detected in same regions as those found using the R implementation.

Controlling FDR using the Benjamini-Hochberg procedure

HAWK uses Bonferroni correction to address multiple testing by default. However, we provide

the option to control false discovery rate (FDR) using the Benjamini-Hochberg procedure. Fig

3(e) and 3(f) show Manhattan plots when k-mers are considered associated with ampicillin

resistance after controlling FDR at level α = 0.05 using the Benjamini-Hochberg procedure.

We observe that many k-mers outside of the β-lactamase TEM-1 gene are considered signifi-

cant. We therefore recommend using Bonferroni correction and using the Benjamini-Hoch-

berg procedure only if the study is under-powered for Bonferroni correction.

Comparison of running time

The execution times of the old and new implementations are compared in Fig 4. Reported

times are obtained by running both implementations using 32 threads. We find that the C++

implementation of the confounder correction phase is approximately three times faster than

the previous implementation in R. However, the overall execution time is dominated by the k-

mer counting step.

Fig 2. Comparison of log of p-values with values computed using the previous implementation in R (-log(pvalue_case_R) and -log

(pvalue_control_R)) along the x-axis and the ones computed using the new implementation using C++ (-log(pvalue_case_cpp) and -log

(pvalue_control_cpp)) along the y-axis, for k-mers positively correlated with (a) cases, and (b) controls.

https://doi.org/10.1371/journal.pone.0245058.g002
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Fig 3. Manhattan plots showing negative logarithms of adjusted p-values of k-mers found significantly associated with

ampicillin resistance against their start positions in Escherichia coli strain DTU-1 genome (a), (c), (e), and plasmid

pKBN10P04869A sequence (b), (d), (f); computed using the R implementation with Bonferroni correction (a), (b);

using the C++ implementation with Bonferroni correction (c), (d); and using the C++ implementation with Benjamini-

Hochberg correction with FDR level 0.05 (e), (f). The horizontal lines indicate the threshold for Bonferroni correction at
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Table 2 shows comparison of execution times of Jellyfish and Jellyfish 2. We observe

that, although Jellyfish 2 is faster overall, the performance improvement it provides is not

substantial.

Finding sex-specific sequences

The HAWK pipeline can be used to find sequences in sex chromosomes in organisms with

unassembled or poorly assembled genomes. To assess the performance, we ran HAWK on

sequencing data from the Yoruba in Ibadan, Nigeria (YRI) and the Toscani in Italia (TSI) pop-

ulations from the 1000 genomes project dataset [11]. Of the 110 YRI and 109 TSI individuals,

107 were male and 112 were female. The sexes of individuals were used as cases and controls

and the pipeline was executed.

The initial step revealed 106,272,845 and 17,056,781 k-mers that are present significantly

more times in female and male samples respectively compared to the other. Principal

0:05

176;284;643
¼ 2:84� 10� 10 and the vertical lines denote start positions of β-lactamase TEM-1 gene, the presence of which is

known to confer resistance to ampicillin.

https://doi.org/10.1371/journal.pone.0245058.g003

Fig 4. Comparison of execution times of old and new implementations (a) for the entire pipelines, and (b) correction of confounding factors using C++ and R

implementations.

https://doi.org/10.1371/journal.pone.0245058.g004

Table 2. Comparison of running times of Jellyfish and Jellyfish 2.

Sub-command Jellyfish (sec) Jellyfish 2 (sec)

histo 20 674

count 19,852 16,580

dump 481 824

Total 20,353 18,078

https://doi.org/10.1371/journal.pone.0245058.t002
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component analysis was then performed on the binary matrix denoting presence or absence of

32,699,548 randomly chosen k-mers, where each k-mer present in between 1% and 99% of the

samples was selected with probability 0.01.

The PCA plots for the first six principal components are shown in Fig 5. The first six PCs

explain 14.90% of the variance among which the first and second PCs explain 7.68% and

2.51% of the total variance respectively. We observe that the first two PCs capture the

Fig 5. Principal component analysis (PCA) plots of the samples in the space formed by (a) first and second PCs, (b) third and fourth PCs, and (c) fifth and sixth PCs

with samples colored according to populations. (d) PCA plots of the samples in the space formed fifth and sixth PCs with samples colored according to sex.

https://doi.org/10.1371/journal.pone.0245058.g005
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population structure whereas no relationship is seen between populations and the next four

PCs. Hence PC1 and PC2 are used as confounders, as done by default. It may be noted from

Fig 5(d) that the fifth PC nearly separate the two sexes. As such treating this as a confounder

would lead to removal of many sex-specific k-mers.

After correcting for confounders, we obtain 14,473,058 and 54,256,206 k-mers positively

correlated with male and female samples respectively. The k-mers were mapped to the human

reference genome (hg38/GRCh38 [GCA_000001405.15]) using Bowtie 2 [14] to analyze their

locations. The results are summarized in Table 3. We find that 99.97% and 96.37% of k-mers

positively correlated with female and males samples map to Chromosome X and Chromosome

Y respectively. The remaining k-mers map to other locations in the human reference genome

or stay unmapped.

The positions of the k-mers, positively correlated with female and male samples, in Chro-

mosomes X and Y respectively are shown in Fig 6(a) and 6(b). We observe that k-mers

throughout the entire sequenced regions of the two chromosomes are detected using HAWK.

It is worth noting that the region in Chromosome Y, where no k-mer could be mapped, is

missing from the reference genome i.e. represented by a sequence of Ns (the wild card charac-

ter used to denote any nucleic acid in fasta format) in the reference [15]. Our analysis reveals

that the k-mers that can be mapped to Chromosome Y have an average total count of 754.10 in

the male samples whereas that of the unmapped k-mers is 2730.06. The histograms of counts

of mapped and unmapped k-mers in Fig 6(c) also show that the count distribution of

unmapped k-mers has a heavier tail compared to that of the mapped ones. This suggests that

many of the k-mers positively correlated to male samples that could not be mapped to Chro-

mosome Y are from the missing region in the chromosome since the missing region is known

to be rich in repeats.

Table 3. Summary of k-mers found positively correlated with female and male samples.

Sex Total Chr X Chr Y Others Unmapped

Female 54,256,206 54,241,253 148 1,474 13,331

Male 14,473,058 6,197 13,947,961 63,454 455,446

https://doi.org/10.1371/journal.pone.0245058.t003

Fig 6. Manhattan plots showing negative logarithm of p-values of (a) k-mers positively correlated with female samples against their positions in

Chromosome X, and (b) k-mers positively correlated with male samples against their positions in Chromosome Y. The region in Chromosome Y,

where no k-mer mapped to, is missing from the reference genome i.e. represented by a sequence of Ns in the reference. (c) Histograms of counts of k-

mers positively correlated with male samples that were mapped to Chromosome Y and those which could not be mapped.

https://doi.org/10.1371/journal.pone.0245058.g006

PLOS ONE Efficient association mapping from k-mers—An application in finding sex-specific sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0245058 January 7, 2021 10 / 12

https://doi.org/10.1371/journal.pone.0245058.t003
https://doi.org/10.1371/journal.pone.0245058.g006
https://doi.org/10.1371/journal.pone.0245058


Discussion

We have re-implemented portions of HAWK, which is a tool for association mapping using k-

mers. The re-implementation in C++ makes it faster and more convenient to use while retain-

ing accuracy. We have also added support for the new version of k-mer counting tool Jellyfish

and correction for multiple testing using the Benjamini-Hochberg procedure. The k-mer

counting step remains the bottleneck in the pipeline which may be addressed by when faster

k-mer counting tools emerge. Finally, we show how the method can be applied to determine

sex specific sequences in organisms accurately.

Acknowledgments
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2. Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C, Croucher NJ, et al. Sequence element

enrichment analysis to determine the genetic basis of bacterial phenotypes. Nature Communications.

2016; 7:12797. https://doi.org/10.1038/ncomms12797 PMID: 27633831

3. Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC, Walker TM, et al. Identifying lineage effects

when controlling for population structure improves power in bacterial association studies. Nature Micro-

biology. 2016; 1:16041. https://doi.org/10.1038/nmicrobiol.2016.41 PMID: 27572646
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